()
AD~ ﬁggsg 633 ~
RN it i'z

et

LLRCHNICATL REPORY
NATICK/TR-93/017

A NONLINEAR DYNARM'C
SPHERICAL MEMBRANE MODEL

by
Richard John Benney D T 1 C
% ELECTE
JAN 2 7 1393
33-01425 Janua {;993 ¢
I 1%
Final Report
August 1991 - July 1992
BEST |
AVAILAELE COPY

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED .

UNITED STATES ARMY NATICK |
RESEARCH, DEVELOPMENT AND ENGINEERING CENTER
NATICK, MASSACHUSETTS 01760-5000

AERO-MECHANICAL ENGINEERING DIRECTORATE

P8 1 36 04y

For

DISCLAIMERS

The findings contained in this report are not to

be construed as an official Department of the Arcy

position unless so designated by other authorized

documents.

Citation of trade names in this report does not
constitute an official endorsement or approval of

the use of such items.

DESTRUCTION NOTICE

For

Classified Documents:

Follow the procedures in DoD 5200.,22-), Industrial
Security Manual, Section II1-19 or DoD 5200.1-R,

Information Sécurity Program Regulation, Chapter IX.

Unclassified/Limited Distribution Documents:

Destroy by any method that prevents disclosure of

contents or reconstructfon of the document.

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pydlic reporting Burden for this ccllection of information 15 estimated to average ! hour per resporse, including the time for reviewing instructions, searching existing data sources,
gathenng and maintaining the 4ata needed, and compieting and reviewing the collection of information. Send comments ve?ardmg this burden estimate or any other aspect of this
collection of :ntarmation, “aciuding suggestions for raducing this burden to Washington Headquarters Services, Oirectorate for information Operations and Reports, 1215 Jetterson
Davis High ~ay, Suie 1204 arhegton, 78 22202-4302. 3ng 10 the Dffice of Vianagement and Budget. P3perwork Reduction Project (0704-0188), Washington, OC 20503.

Y Jank)]2_REPORT DAT, 3. REPORT TYPE AND DATES COVERED
1. AGENCY USE ONLY (Leave blank) January 3;93 !'Eng Report Aug 91 to July 92
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A NONLINEAR DYNAMIC SPHERICAL MEMBRANE MODEL PE 62786D
PR 1L162786D283
6. AUTHOR(S) WU HOO

RICHARD JOHN BENNEY

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
U.S. Army Natick RD&ER Center
ATTN: SATNC-UB
Natick, MA 01760-5017 NATICK/TR-93/017

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

A static set of nonlinear spherical membrane equations are modified to model the dynamic response
of a spherical membrane to a time dependent pressure distribution. The two governing partial
differential equations (PDE’s) were converted into a system of nonlinear first order differential
equations which are finite differenced in space and solved numerically. The model is a first step
towards modelling the dynamic response of parachutes during the complex opening phase.

The ultimate end use for a numerical structural dynamic canopy model is to couple it with a
numerical model of the fluid medium surrounding the canopy. This coupling problea is a concurrent
effort at the U.S. Army Natick Research, Development & Engineering Center. The project involves
coupling the computational fluid dynamics (CFD) code SALE (Simplified Arbitrary Lagrangian
Eulerian) to a modified version of the spherical membrane model Fortran programs described in
this report. The spherical membrane model coupled to the CFD code SALE will be a major step
towards the solution of the opening problem of parachutes. The solution of the opening problem
will provide essential information to aid in the design of high-speed, low-altitude airdrop
systems.

1. SUBJECT TERMS COMPUTATIONAL FLUID DYNAMICS (CFD) 15. NUMBER OF PAGES
PARACHUTE MODELS PARACHUTES VIBRATIONAL ANALYSIS 122
STRUCTURAL ANALYSIS ANNULAR PARACHUTES 16. PRICE CODE

17. SECURITY CLASSIFICATION |[18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT

W th8 r1en OF N % 1D OF RiLAYs1r1ED SAR

SN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
—"ngs(v):l)ed Dy ANSI Sta Z39-'8
2981

Figures & Tables

Preface

List of Symbols

Introduction « o o o o

Formulation and Analysis .

Reformulation for SLATEC Software
Fortran Program Descriptions
MATLAB Program Descriptions . . .
Boundary Condition Options and Examples
Example # 1
Example # 2
Example # 3

Related Topics

Discussion of Model

Conclusion

References

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

A.
B.
C.
D.
E.
F.
G.

H.

Development of Dynamic Membrane
Development of Finite Difference Equations

Development of Symmetry Boundary Condition

CONTENTS

Equations

Development of Infinite Mass Boundary Condition

Comparison with Static Results Presented By Stoker
Static Comparison with NISA Finite Element Model
Vent and Annular Canopy Boundary Conditions . . .

Static Fortran Programs

iiji

vii

viii

16
18
20
26
32
39
40
42
44
45
47
48
49

53
57
60

Appendix I. Dynamic Fortran Programs . . « « « « « o « « « « » 74
Appendix J. Static MATLAB Program . . . « « « « « « « « « « o 99

Appendix K. Dynamic MATLAB Program . . . « « « « « « « « « - » 106

iv

Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure

1.
2.

3.
4.
5.

7.
8.

10.
11.

12,
13.
14.
15.
16.
17.
18.
19.
20.

21.
22,

FIGURES

Spherical Membrane Model « « « .

Flow Chart Outline for Static and Dynamic Programs

Example # 1 = Figures 3-11

Membrane Shape at Five Different Time Steps .

Tangential Deflections Versus Theta at Five Times .

Normal Deflections Versus Theta at Five Times
Normal Deflections Versus Time
Normal Velocities Versus Time
Hoop Strain Versus Theta at Five Times
Meridional Strain Versus Theta at Five Times .
Hoop Stress Versus Theta at Five Times
Meridional Stress Versus Theta at Five Times
Example # 2 = Figures 12-20

Membrane Shape at Five Different Time Steps .

Tangential Deflections Versus Theta at Five Times .

Normal Deflections Versus Theta at Five Times
Normal Deflections Versus Time e o o o o o @
Normal Velocities Versus Time
Hoop Strain Versus Theta at Five Times
Meridional Strain Versus Theta at Five Times .
Hoop Stress Versus Theta at Five Times
Meridional Stress Versus Theta at Five Times .

Example # 3 = Figures 20-31

Static Solutions up to Initial Pressure Distribution

Membrane Shape at Five Different Time Steps .

v

13

21
21
22
22
23
23
24
24
25

27
27
28
28
29
29
30
30
31

33
33

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

23.
24.
25.
26.
27.
28.
29.
30.
31.
D-1
E-1
F-1
F-2
F-3
F-4
F-5
G-1
G-2
G-3

Tangential Deflections Versus Theta at Five Times

Normal Deflections Versus Theta at Five Times . .
Normal Deflections Versus Time
Normal Velocities Versus Time ¢« « « « .
Hoop Strain Versus Theta at Five Times « o e o
Meridional Strain Versus Theta at Five Times . .
Hoop Stress Versus Theta at Five Times « o e o
Meridional Stress Versus Theta at Five Times .« o
Static Solutions up to Final Pressure Distribution
Infinite Mass Boundary Condition at 0., « o o

Comparison of Figures 2a,b, and ¢ from Stoker Text
Element & Node Point Layout for NISA Model . o .

Comparison of U Deflection Versus Theta (150)

Comparison of W Deflection Versus Theta (150) . .
Comparison of U Deflection Versus Theta (660) . .
Comparison of W Deflection Versus Theta (660) . .
Membrane Shapes at Different Stepped up Pressures
Tangential Deflection Versus Theta

Normal Deflections Versus Theta . . « ¢ « ¢ « » &

TABLES

Table 1. Constant Input Parameters for Example Problems . .

Table E-1. Definition of K in Stoker Text . « « « ¢ « o ¢ o o«

vi

34
34
35
35
36
36
37
37
38
49
53
55
55
56
56
57
59
59
60

20
52

PREFACE

The work described in this report on A Nonlinear Dynamic Spherical
Membrane Model was undertaken during the period August 1991 to July
1992, The funding was Program Element 62786D, Project No.
1L162786D283, Task No. AJ, and Work Unit Accession No. HOO. This
work was performed by the Engineering Technology Division (ETD) of
the Aero-Mechanical Engineering Directorate (AMED).

The author wishes to express his appreciation to Dr. Earl Steeves
of ETD for his help in this effort.

DTIC QUALLTY LiveriGiiD B

Aeoé'sl.on Yor

e /

; NTIS &Redd d{
0
(]

. DPEO RAB
Unavaownesd

Justifiestien __

By
_Distriwetien/
Avatlatility Cecdes
! 'Avall and/or
Dist | Spectal

vii lp‘\ 'i '

>

€ £

£ ot 0y ?'_ZZS‘MUOOOU
o

3

LIST OF SYMBOLS

Partial Derivative of u wrt 0

2nd partial Derivative of u wrt 6 Squared
Partial Derivative of w wrt 6
Constant Tangential Damping Ratio
Constant Normal Damping Ratio

2nd Partial Derivative of w wrt 6 Squared
Young’s Modules

Membrane Thickness

Number of Nonlinear Algebraic Equations
Number of Nonlinear ODE’s

Number of Nodes Used to Model Sphere
Pressure

Membrane Radius

Time

Tangential Deflection

Normal Deflection

Vector of Tangential Deflections
Vector of Tangential Velocities
Vector of Normal Deflections

Vector of Normal Velocities

Vector (z,,2,,2;,2,)

Hoop Strain

Meridicnal Strain

Poisson’s Ratio

Locates a Meridian Plane

Density of Membrane

Hoop Stress

Meridional Stress

Defines Position on Meridional Line
Defines Bottom Location of Sphere
Defines Top Location of Sphere

viii

A NONLINEAR DYNAMIC SPHERICAL MEMBRANE MODEL

Introduction

The ultimate end use for a structural dynamic canopy model is to
predict the complex opening phase of a parachute. Predicting the
opening phase of a parachute must involve the coupling of the
structural model representing the canopy (fabric and lines) with
the fluid medium surrounding the canopy. The coupling problem is a
concurrent effort at the U.S. Army Natick Research, Development &
Engineering Center. The effort involves coupling the computational
fluid dynamics (CFD) code SALE (Simplified Arbitrary Lagrangian
Eulerian) to a modified version of the spherical membrane model
described in this report. The spherical membrane model is used in
the program as a large subset of subroutines. The spherical
membrane programs need the pressure distribution on the sphere
surface and a time step as input. The programs return the
corresponding deflections and velocities of the membrane as output.
The spherical membrane model coupled to the CFD code SALE will be
a major step towards the solution of the opening problem of
parachutes. This solution is essential in the design of high-speed
and low-altitude airdrop systems.

A nonlinear spherical membrane model was developed by Stoker (see
reference 6) for the solution of static problems. The model was
modified to include inertia terms. In this report, the resulting
partial differential equations (PDE’s) were converted into a system
of nonlinear first order ordinary differential equations (ODE'’s).
These equations are solved numerically. The dynamic response of any
portion of a spherical membrane can be determined for a given time-
dependent pressure distribution and a set of initial conditions.
The model is a first step towards modelling the dynamic response of
parachutes during the complex opening phase.

The six governing equations for six unknowns presented by Stoker
are converted into two governing PDE’s through manipulations and
the addition of inertia terms. In the model all of the parameters
used *o describe the sphere along with the pressure distribution
are assumed to act on the undeformed spherical shape. Therefore,
the description of these equations can represent small to
moderately large displacements. The PDE’s are written in terms of
the unknown tangential and normal components of deflection and
various derivatives of each. The PDE’s are second order in time and
second order in space. The two PDE’s are converted t» four PDE’s
each of which is first order in time and second order in space.
These four PDE’'s are finite differenced in space to yield a
nonlinear system of first order ordinary differential equations.

1

The number of ODE’s is dependent on the number of nodes used to
represent the spherical membrane. The number of ODE’s to be solved
is equal to four times the number of nodes used. The resulting
ODE’'s are incorporated into a Fortran program which calls the
subroutine "DDEBDF" (see reference 5) (DDEBDF is part of the SLATEC
library obtained from the National Energy Software Center). The
number of nodes used to represent the canopy is a user-defined
parameter.

Two separate main Fortran programs were written, one for static
solutions (which yields the membrane deflections for a given time
independent pressure load) and one for the dynamic response. The
programs take input in dimensional form but solve the
nondimensional form of the equations. A variety of different
boundary conditions can be chosen. The options include a "pinned-
top pinned-bottom", "symmetry-top pinned-bottom", and a "symmetry-
top infinite mass bottom". The programs generate output in a matrix
format which is readable by MATLAB. The MATLAB software has many
capabilities but is only used for postprocessing with this problem.
Two MATLAB programs were written which process the results of a run
from matrix format into graphical results.

The static solutions presented by Stoker were reproduced. The
static Fortran program is solving a system of nonlinear algebraic
equations (time independent). The subroutine DNSQE.f (part of the
SLATEC library) is used to solve these equations. The "pinned-
bottom pinned-top" boundary conditions were also modelled using
NISA (see reference 4) for comparison to thin shell finite
elements.

A normal and a tangential damping term were added to the dynamic
model to check that time independent pressure distributions would
damp out to the static solution. A variety of dynamic runs were
made using different time steps, different numbers of nodes,
different node distributions, etc., to check the results for
consistency.

The Fortran programs in a modified form are currently being coupled
to the CFD code SALE by Natick personnel. The programs are capable
of computing large deflections from the undeformed spherical shape.
These large deflections are not accurately modelling a physically
real membrane, and the model was not chosen with the intention of
doing so. The limitations on accurately modeling large deflections
include: 1. the material is considered linearly elastic 2. the
loads are applied to the undeformed spherical shape 3. compressive
stresses are permitted and 4. all def-~rmations are based on the
undeformed geometry. The model can hc¢ zver reproduce these large
"numerical" deflections which will enable engineers involved with
the coupling problem to investigate the problems associated with
large amplitude deflections in rapid motion. This experience is
expected to ensure an easier coupling of future parachute
structural dynamic models with modified CFD codes.

2

Formulation and Analysis

The static nonlinear spherical membrane equations developed by
Stoker can be written in terms of the tangential and normal
deflections. The section of a sphere is represented by a single
meridional curve in the global X,Y coordinate system as shown in
figure 1.

YA\

AXIS OF
SYMMETRY

MERIDIONAL
LINE OF
&~ MEMBRANE

AN
/

X

Figure 1. Spherical Membrane Model

A "vent" size can be prescribed by the angle 0., (set to zero for
no vent) and the "skirt edge" is defined by the angle 0,,,. The six
governing equations developed by Stoker are presented in Appendix
A and are modified by including inertia terms and manipulating the
equations into the following two partial differential equations.
These equations are merely Newton’s second law written in the
tangential and normal directions. The resulting PDE’s representing

3

dynamic equilibrium in the tangential and normal directions are
shown in equation (1) and (2) respectively.

d*u_ow 1d°wiw _ud’w wiw _wu_ 1 (aw),_
907 99 R96709 Rgo: R96 R 2R d9
S3u*dw_3 u (aw),_ u’ A adu cot()(aw),+
ZRI99 ZRT 98 72RT 00 2R 'd9 (1)
cotf dw, cotu? dw_2ucotl dw _wow_
R 99 ~ 2R 99 T R Jd9 RTY
3u3cotf uw_cot® aw),]=c ou, l-vsz,a’u

—r— 1 & (39 St PR e

cotf-ucot?0+

+v[-u-

cot® ow du_ wcoth ow cote(dw,,. 3 ucot@ (ow
R 0900 — R 98 2RrR? '99' 2 RF "d8

3 u’cot® ow, ucotb du_uwcot cotl . 1 d%udw_

Z7 RZ 90 R 00 R 2R? R'36% 00

)2+)2+

(aw)2+ 3 a’w(¢‘)w),+2uazwaw+ 3 (aw 26u+2uauaw+
2R 99’ 2RE902 00’ RI 90200 2R’ 90 00 R? 00 08

ud?u_udw, 3u® d*w, 3u’du, 1dud’w_wolw, 1(au),_ (2)
K907 R90 2R 907 2R 00 ROU 907 Rg6° R 00
2 -
_R‘:.g.g+%+ucot9—2w+%.g.g+;§+v[;u_g_g_wc:tﬁ_g_g_
3u? _wucotf cotf duodw_ 3 (aw),+ 2ucotf du ucoth 9’w_
2R R R 009d0 2R'99° — R o8 ~ R 967
wolw_wou, du ~c 90w, 1-v2 d?w_ R?’p

%307 RO 30 voet— PR)

+ucotf-2w]

The static version of these equations is obtained by setting the
right hand side of each equation to zero. This is equivalent to
setting the velocities and accelerations to zero (no time
dependence) .

These equations are transformed into a nondimensional version by
applying the nondimensional (ND) parameters shown in equation (3).
The nondimensional version of the governing equations are shown in
equations (4) and (5) (the "ND" subscripts are dropped for
convenience).

These governing partial differential equations are second order ian
time and second order in space. When solved, these equations yield
the normal and tangential velocities and displacements as a
function of theta and time. If the velocity and accelerations in
these equations are set equal to zero, the resulting solution

4

w u
1-v?
om.- x E
—yld
Pr=p R)

_p(1-v2 2y -0.5
top=t(E pR?)

.;u’%;—.;.u(g.;)’-_';+.g.;cot9—ucot’6+ﬁ’z‘£(g.g
cote.g.;u_+f_°%e_uz+v[—u-%%'—Zucote.g.g«rwaw-
3u’c;ot9 rUW- cozte (_g_a_r),]=cu_g_lé+_g’?u

)+

dwou _ dw_ cotf dw,; 3 ow
COtG'a'U'B'U wc°t6'5'6'+_'2_('3'6' IucotB(.a.e.

3 .. ow ou_ cot@ ., 0%u dw_
.z.u cote.a.e.+ucot9.a.6. uwcot6+_2_u +'a‘613'6
1,0w,,, 30w, 0w,, d’wow,k 3,0w,,0u ou dw
VAR AR & T IA Rl T E A AS R A T
pdiu_,ow 3u? 3w, 3u’Jdu du a’w_wa’w+(6u),_

902 00 2 902 2 09 099627 90% 90
du_ odu _ dw, u? 2y OW_ ow_
w.a.o.+_de.+ucot0 2w+u.a.6.+_z_+v[3“?’9’ wcotO_d.B. 2
duodw_3 6 dw du 0w _
—wucot6+c_ot6.a.6,.a.6. .2.(35 6.a.e.+ucotﬂw
dw__du_du ow,_ d*w_
WW w.a.B.+.a.6. '3'E+ﬁ7 p(9,t)

))+

3u?

-)2+2ucot

+ucotf-2w]=C,

yields the static normal and tangential displacements as a function

(3)

(4)

(5)

of theta. A system of subroutines (SLATEC Library, see reference 5)

are used to solve these equations numerically at a user defined
number of node points on the sphere. The equations are reformulated
into a form which is compatible with the SLATEC subroutines. The
reformulation and SLATEC program input will be discussed in the

next section.

Reformulation for SLATEC Software

The governing equations are first transformed from two PDE’s each
of which is second order in time and space to four PDE’s each of
which is first order in time and second order in space. A new set
of variables are defined in equation (6) to reformulate the
equations. The partial derivatives are redefined to simplify the
equations as shown in equation (7). The four governing ODE’s in
terms of these new variables are shown in equations (8) and (9).

z,=u Z,=w
_du aw (6)
zz"a‘E zr—a‘E

du_9z, __ Fu_©&z

0 302 002
(7)

0z,
It %
0z, 1 3
—a-f"‘[B‘C"’DC*'sz"’zsc"z:zx"z(C) - |
3 2 _3 2_ 213 - 2 COtO 2 8
5% c .zzl(C) _2_+Acot0 z,cot 6+__2._(C) + (8)

2
cotfCz, + ff:';f}_ +v[-2,-C-22,cot0C+2,C-

3z,*cotb coth

——z—*zxza"—z-—(c)z]‘cuzz]

Next, the spherical membrane is represented by a set of node points
located along a meridional curve of the membrane in the global XY
plane. The node points are numbered from node number one at theta
minimum to node number "nth" at theta maximum. The value of "nth"
is equal to the total number of nodes used to represent the
membrane. The value of derivatives with respect to theta in the

6

ot
%ff‘.=- [cotOCA-wcotOC+292t_e. (C)’+.§zlcot6 (C)*+
.g. 2,’cotBC+z,cotfa-z z,cot+ _cfztﬁ z,’+BC-
1 2 3 2 3 2
.2.(C) +.2.D(C) +22‘DC+.2.(C) A+2z AC+ (9)
3z2 322 2
z,B-21C+_2._D+_2_A+AD—z,D+(A)‘-

2
z,A+A+z,cot0-22,+2,C+ _z,z‘_
3z2

2‘ -z, zlcéte +cotOAC- .;. (C)2+2z,cotBA+2z,cotbD-
z,D-z,A+A+z,cot0-22,]1-C,2z,+p(6,t)]

+v[-32,C-z,cotlC-

governing equations are approximated with second order accurate
finite difference equations (FDE’s) in terms of the deflections at,
and spacing between the node points. Four FDE’s are used
extensively in the analysis with a variable grid spacing. The FDE'’s
are derived in Appendix B by starting with a second order Lagrange
Polynomial. The second order Lagrange Polynomial fits a second
order polynomial through three consecutive node points. The
variable grid option is used to allow for grid clustering near
boundaries where rapid changes in the dependent variable occur and
to give more flexibility to potential users involved in coupling
these equations to grids generated for and used with the CFD
program SALE. The grid clustering options are discussed in more
detail in the "Fortran Program Descriptions" section of this
report.

Dynamic case:

The FDE’'s when applied to the derivatives with respect to theta in
equations (8) and (9) convert the four partial differential
equations into a system of "N" nonlinear first order ordinary
differential equations (ODE’s). These ODE’s are nonlinear in space
and first order in time. The value of N is dependent on the number
of nodes used to represent the sphere and is given by N=4*nth where
"nth" is defined as the total number of node points. The value of
nth is user defined; however, changing its value requires the
program to be recompiled. The variables z,,z,,2z,, and 2z, are now
vectors of length nth. Each element of the vector z;, (i=1-4) has a
unique value at each node point on the spherical membrane at each
time step. These values are the solution of the governing system of
ODE’s. This resulting system of equations can be written in an

7

acceptable form for the SLATEC subroutine DDEBDF.f. The subroutine
DDEBDF.f uses the backwards differentiation formulas of orders one
through five to integrate a system of first order ordinary
differential equations. The equations must be written in the format
shown in equation (10). DDEBDF.f requires a separate subroutine be
written which defines the differential equations. A set of initial
conditions must also be specified.

DZ
== =DF(t, 2)

where ZT=(z,,z,,z,, 2,)

Static Case:

The static equilibrium equations are obtained by setting the time
derivative terms in equations (8) and (9) to zero (note that z, and
z, are identically zero). Applying the FDE’s to the derivatives
yields a system of "M" nonlinear algebraic equations. The value of
M is equal to 2*nth where nth is the user defined total number of
nodes representing the canopy. The resulting system of nonlinear
algebraic equations can be written in an acceptable form for the
SLATEC subroutine DNSQE.f. The purpose of subroutine DNSQE.f is to
find a zero of a system of M nonlinear functions in M variables by
a modification of the Powell hybrid method. The right hand side of
the governing system of equations can be defined as a new function
for which DNSQE.f attempts to minimize. The governing equations
must be written in a separate subroutine. An initial estimate of
the deflections must also be supplied.

The solution of either the dynamic or static equations also depends
on the boundary conditions applied at the ends of the membrane. A
variety of boundary condition options were programmed. Each
boundary condition option will be discussed in the "Boundary
Condition Options" section of this report.

Fortran Proqgram Descriptions

The static and dynamic solutions to the spherical membrane problem
are determined numerically with two separate Fortran programs. The
programs are capable of solving the spherical membrane problem for
a wide range of input parameters and forcing functions. The
programs described in this section were written to test a wide
variety of problems so that the version used for the "coupled
problem"” would be both error free and have tested multiple user
options. Whenever possible, the common variables used in each
program have been assigned the same name. The ultimate end use of
these programs is to couple the dynamic program to the CFD code
SALE and use the static program to generate initial conditions for
the deflections. The static program is also used to check the
results of a dynamic run that is damped and has reached
equilibrium. This section gives a brief overview of the program
features followed by a flow chart which outlines the contents of
each program. The programs are located in Appendixes H and I.

The Fortran programs have a variety of boundary condition options.
The static problem requires two boundary conditions at each
boundary node. These conditions are obtained from Stokers
derivation which uses the principle of minimum potential energy to
derive the static equations of equilibrium. One set of conditions
for the static case is to specify both a tangential and normal
deflection at both boundary node points. The dynamic program
requires conditions on velocities and displacements at the end
point nodes. The dynamic program also requires initial conditions
for both tangential and normal deflections and velocities at every
node point. The boundary condition options available in the
programs are: 1. "pinned-bottom pinned-top": This option restricts
all deflaction of the node points located at theta minimum and
theta maximum. The tangential and normal deflections at the
boundary node points are set to zero and remain zero for all
pressure loads and/or time. 2. "pinned-bottom symmetry-top": The
value of theta minimum is set to zero degrees for this option. The
boundary conditions at the peak of the sphere are symmetric, which
requires the tangential displacement to be zero and the slope of
the meridional curve to remain zero. The mathematically equivalent
statements involving neighboring node points are derived in
Appendix C. The displacement of the node point at theta maximum is
restricted to zero. 3. "linear solution": This option is simply the
linear version of the equations solved for a constant applied
pressure. The static solution was shown by Stoker to be [w(8)=(1-
v)R?’p/(2Eh)]. The dynamic program solves the dynamic version which
is equivalent to a simple mass-spring-damper system. All of the
normal deflections are equal at any given time. 4. "infinite mass
bottom symmetry-top": The value of theta minimum is set to zero for
this option and the symmetry boundary conditions are used (see
appendix C). The boundary node at theta maximum is restricted to
motion along a circular path in the global "X,Y" coordinate system.
The radius of the circle is defined as the distance from the

9

undeformed bottom edge of the canopy at theta maximum to the point
of intersection with the global "Y" axis along a line that is
tangent to the bottom edge of the undeformed canopy. This condition
requires the value of theta maximum to be greater than 90 degrees.
This model is a closer representation of a parachute. The lines can
be visualized as a conical cone that is fixed at the apex
(intersection with the "Y" axis) and connected to the bottom edge
node at theta maximum on the spherical membrane. The development of
this boundary condition is presented in Appendix D.

Both a variably spaced grid option and a user-defined number of
node points option are incorporated into each program. The user
defined number of nodes "nth" is defined in a "parameter" statement
in both the main programs and subroutines. Therefore the programs
must be recompiled to change this option. The programs have been
run with as few as eleven node points and as many as one hundred
node points to represent the sphere. The variably spaced grid
option allows the user to define the node point locations on the
undeformed sphere with unequal spacing. This option will allow the
user of the coupled codes to use CFD grid generators and/or the
ability to cluster nodes in areas of interest. Three clustering
options (see reference 3) were used to check this capability. The
first option clusters nodes at theta minimum, the second clusters
nodes at theta maximum, and the third option clusters nodes at both
theta minimum and theta maximum. The degree of clustering for each
option is controlled by the input constant "beta". The degree of
clustering increases as beta approaches a value of one from above.
The clustering options were found to have a negligible effect on
the solution of any given problem provided the degree of clustering
is reasonable (the program will not converge properly if for
example 90 percent of the nodes are located along a 10 percent
length of the membrane).

The dimensions and material property of the spherical membrane are
also user defined and input as dimensional quantities. Any section
of a sphere can be modelled. The user must define the value of
theta minimum in degrees, which must be greater than or equal to
zero degrees. The value of theta maximum must be less than 180
degrees and greater than theta minimum. Test runs with theta
minimum equal to zero and theta maximum equal to five degrees, and
theta minimum equal to zero degrees and theta maximum equal to 179
degrees have converged. The user must also define a constant
membrane thickness, a constant value for Young’s Modules of the
membrane. Also, for the dynamic program values of the material
density, tangential damping constant and normal damping constant
must be given. A wide variety of these properties were tested. Note
that the program solves the nondimensional version of the governing
equations so that certain lumped nondimensional parameters are
influencing the solution (see nondimensional parameters equation #
3).

The pressure distribution on the canopy as a function of theta was

10

assumed for test runs of the model. Three options are included for
testing the model. The first option is a 1linear pressure
distribution which generates a linearly changing pressure along the
canopy surface from pressure values supplied at theta minimum and
theta maximum. The second option is a parabolic pressure
distribution. This option requires as input the pressures at theta
minimum, theta maximum, and the pressure at a user-defined
"interior" value of theta. The option generates a second order
polynomial fit to these three data points. The second order
polynomial is then used to calculate the values of the pressures at
any other value of theta. The third option is a user-defined
pressure distribution with which the user manually assigns values
of the pressure at each node point.

The static program uses the prescribed pressure distribution in one
of two ways. The static program can start with a value of zero
pressure on the sphere and linearly increase the pressure at each
node point to the previously defined final value in a user-defined
number of steps (the steps are necessary to guarantee convergence).
The static program can also start from a previously calculated
solution and the previously defined final pressure distribution and
calculate solutions for stepped-up values of the pressures of equal
magnitude for each node point for a user-defined number of steps.
The dynamic program uses the pressure distribution as a function of
theta in one of four ways. 1. The pressure distribution can be
considered independent of time and therefore act as a step load. 2.
The pressure distribution can start at zero and linearly increase
to the final user-defined pressure distribution over a user-defined
quantity of time. The pressure remains constant (with time) after
this time has been reached. 3. The pressures at the starting time
are the user-defined pressure distribution. The pressures at each
node are linearly decreased to a state of zero pressure and remain
at zero after a user defined time. 4. This option is the same as
the second option with one addition. The user defines a constant
pressure. The user also defines a time at which all node point
pressures will jump to the constant pressure for all future times.
These options allowed for a wide variety of pressure distributions
as a function of theta and pressure fluctuations with respect to
time.

The Fortran programs both use the SLATEC library of subroutines to
solve the governing systems of equations. The static prngram calls
the subroutine DNSQE.f, which solves a system of 2Jonlinear
algebraic equations. The dynamic program calls the subroutine
DDEBDF.f, which solves a system of nonlinear first-order
differential equations.

The Fortran programs discussed above are run interactively. They
produce a variety of output to the screen, which indicates progress
and intermediate results. The static program also writes to files
that are readable for new static runs and for initial conditions on
deflections readable by the dynamic program. The programs also

11

write to files that are set up in a MATLAB readable matrix format.
These output files are easily read by the MATLAB software. Two
separate MATLAB programs, one for static output and one for dynamic
output, were written and are usable for postprocessing. These
programs and MATLAB’'s capabilities will be discussed in the next
section.

Dynamic Fortran Program Flow Chart Outline

The flow chart outline for both the static and dynamic Fortran
programs is shown in Figure 2. A description of each letter’'s role
in the flow chart for the dynamic program is given below. The
dynamic Fortran programs are located in Appendix J.

A. Input dimensional parameters: radius of sphere, Poisson’s ratio,
Young’s modules, theta minimum, theta maximum, membrane thickness,
density of membrane material, tangential damping ratio, normal
damping ratio, and the type of boundary conditions. The boundary
condition options include: 1. pinned-bottom pinned-top 2. pinned-
bottom symmetry-top 3. linear solution (normal deflections only)
and 4. infinite mass bottom symmetry-top, etc.

B. Input the type of clustering used to define the node point
positions on the undeformed sphere. The options are uniformally
spaced grid, node point clustering near theta minimum, node point
clustering near theta maximum, or node point clustering at both
theta minimum and theta maximum. The clustering options all depend
on the user-defined parameter beta which controls the degree of
clustering.

C. Input the pressure distribution on the sphere as a function of
theta. The options available are: 1. linear pressure distribution
as a function of theta. 2. parabolic pressure distribution defined
by the two end node pressures and a user-defined interior value of
theta and corresponding pressure. 3. Individual entry of each nodal
pressure value.

D. Input time information including starting time, time step (value
of time in seconds ahead of starting time at which a solution is
requested), finishing time.

E. Input pressure versus time option. The options available are: 1.
Start with all pressures equal to zero and increase them linearly
to the described pressure versus theta function at a user-defined
time. Also, keep the pressures constant for all future times. 2.
Start with the defined pressure versus theta function and linearly
decrease the pressures to zero at a user defined time and keep the
pressures zero for all future times. 3. Same as option 1. but also
define a constant pressure versus theta value to which all
pressures "jump" at a user-defined time.

F. Input initial conditions for displacements and velocities in the

12

C START D

AB.CDEFG
1J.K
NO
YES
M
STOP

Figure 2. Flow Chart Outline for Static & Dynamic Programs

normal and tangential directions at every node point. The options
are: 1. Set all displacements and velocities equal to zero
(starting from an undeformed geometry at rest). 2. Read in a set of
displacements and velocities either from a previous run or from
output produced from the static Fortran program.

G. Input the value of three node points for which the accelerations
as a function of time will be saved. Input the number of time steps
to save, and the total number of loops for the run. Note: either
the final time or the total number of loops will terminate the
program, whichever comes first. Also the "bb" matrix for MATLAB
postprocessing is written to the output file (Note: the MATLAB
matrices and program are described later in this report).

13

H. Enter the main DO LOOP.

I. Call the SLATEC program DDEBDF.f linked to the correct set of
equations which are based on the prescribed boundary conditions.
The subroutine DDEBDF.f needs the following input, which is
automatically determined by the Fortran program for each loop: 1.
A subroutine name where the governing ordinary differential
equations are located (The ODE’s and subroutine must be written in
a predescribed format). 2. Current deflections and velocities at
each node point. 3. Current time and desired output time.

J. Extract the desired output if requested for this time step. This
includes the current global node point 1location, current
displacements and velocities at every node point, current pressure
values at each node point, hoop and meridional strain at each node
point and the hoop and meridional stress at each node point. Update
maximum and minimum values. Write this information to matrix "bb"
for postprocessing and write state of progress and current time to
screen.

K. Update the pressure distributions for the next call (if the
pressure distribution is a function of time). Update all the
parameters that have changed for the next call.

L. If current time is greater than or equal to the "final time" or
if the total number of passes through the loop has been reached,
then go to M, otherwise go to H.

M. Write final values of deflections, pressures, strains and
stresses to the screen. Write the MATLAB matrix "aa" and terminate
execution.

Static Fortran Program Flow Chart Outline

The flow chart outline for the static program is shown in Figure 2.
A description of each letter’s role in the flow chart for the
static program is given below. The static Fortran programs are
located in Appendix I.

A. Input dimensional parameters: radius of sphere, Poisson’s ratio,
Young'’'s modules, theta minimum, theta maximum, membrane thickness,
and the type of boundary conditions. The boundary condition options
include: 1. pinned-bottom pinned-top 2. pinned-bottom symmetry-top
3. infinite mass bottom symmetry-top.

B. Input the type of clustering used to define the node point
positions on the undeformed sphere. The options are uniformally
spaced grid, clusterlng near theta minimum, node point clusterlng
near theta maxlmum, or node point clusterlng at both theta minimum
and theta maximum. The clustering options are all dependent on a
user-defined parameter that controls the degree of clustering.

14

C. Input the pressure distribution on the sphere as a function of
theta. The options available are: 1. linear pressure distribution
as a function of theta. 2. parabolic pressure distribution defined
by the two end node pressures and a user-defined interior value of
theta and corresponding pressure. 3. Individual entry of each nodal
pressure value.

D,E,F. Input an initial guess for displacements in the normal and
tangential directions at every node point. The options are: 1. Set
all displacements equal to 2zero (starting from an undeformed
geometry), 2. Read in a set of displacements from a previous run.

G. Input the value of the pressure step. The pressure step is used
to increase or decrease the value of the pressures after each call
so that solutions for a variety of stepped up pressure functions
can be found with one execution of the program. Input the number of
solutions to be saved for postprocessing and the total number of
passes through the solution loop. Also the "ff" matrix for MATLAB
postprocessing is opened (Note: the MATLAB matrices and program are
described in the next section of the report).

H. Enter the main DO LOOP.

I. Call the SLATEC program DNSQE.f linked to the correct set of
equations which are based on the prescribed boundary conditions.
The subroutine DNSQE.f needs the following input which is
automatically determined by the Fortran program for each loop: 1.
A subroutine name where the governing system of nonlinear algebraic
equations are located (The equations and subroutine must be written
in a predescribed format). 2. Current "guess" deflections at each
node point. 3. Current pressure distribution at each node point.

J. Extract the desired output if requested for this pressure
function. This includes the current global node point location,
current pressure values at each node point, hoop and meridional
strain at each node point and the hoop and meridional stress at
each node point. The static program also calculates the total
vertical force at each node point. This calculation is preformed in
two ways for comparison, first by integrating the pressure
distribution over the undeformed sphere, and second by computing
the vertical component of force based on the computed meridional
stresses at each node point.

K. Update the pressure distributions for the next call. Update all
the parameters that have changed for the next call.

L. If the total number of passes through the loop has been reached,
then go to M. else go to H.

M. Write final values of deflections, pressures, strains and
stresses to the screen. Write the MATLAB matrix "hh" and terminate
executions.

15

MATLAB Program Descriptions

The Fortran programs used to solve the static and dynamic spherical
membrane problems generate a large quantity of numerical data. The
data generated from a run must be analyzed in a 1logical and
efficient manner. The software package MATLAB was chosen for
postprocessing the results from both Fortran programs. The dynamic
program results presented the largest challenge because the data
are saved for a large quantity of time steps. The user must be able
to extract information of interest including deformed shape,
strains, and stresses all as a function of time. This requires the
ability of graphic animation to present the motion of the membrane
as a function of time.

This animation capability was generated in the dynamic MATLAB
program. MATLAB is capable of plotting a curve on to a fixed
coordinate system. The data plotted can be read from any portion of
a preloaded matrix. The curve can be "erased" by replotting it with
the "invisible" option in MATLAB. Therefore, to create animation,
a curve is plotted then erased for one time step, then plotted and
erased for the next time step, etc. The inclusion of a "pause"
statement before the erasing of each curve allows the user to stop
the animation at any time step. The MATLAB software is run from the
STARDENT mini supercomputer. The animation showing the results from
a dynamic program run appears as uninterrupted motion to the human
eye for runs with less than 30 node points. A list of the output
saved by the dynamic and static program in MATLAB matrix format and
the capability of the two MATLAB programs is discussed below. It
should be noted that the MATLAB programs are a valuable tool in the
debugging of the Fortran programs. The MATLAB programs will also
serve as the postprocesser of choice for future parachute
structural models including the dynamic aspects of the canopy in
the coupled problem. A brief outline of the plotting sequence from
the dynamic and static MATLAB program is given below.

Dynamic MATLAB Progqram:
The first graph is a listing of various input parameters of the

run. Next, the overall global shape of the canopy (as a two-
dimensional meridional line figure) is plotted and the user can
view the deformed shape as a function of time. The tangential and
normal deflections as a function of theta can also be viewed in
animation at each time step. The MATLAB program then allows the
user to plot the tangential, normal or resulting displacements,
velocities and pressures at any user-defined node point as a
function of time. The next section of the program plots hoop and
meridional strains and stresses as a function of theta in animation
with respect to time. The program also plots the pressure
distribution as a function of theta in animation with respect to
time. The program sets appropriate axes based on minimum and
maximum values that are tracked during execution of the dynamic
Fortran program. The dynamic MATLAB program is located in Appendix

16

K.

Static MATLAB Programs
The first graph is a listing of various input parameters of the

run. Next, the overall global shape of the canopy (as a two-
dimensional meridional line figure) is plotted and the user can
view the deformed shape as a function of different statically
applied pressure distributions. The tangential and normal
deflections as a function of theta can also be viewed at different
pressure distributions. The user can also plot the hoop and
meridional strains and stresses in the membrane as a function of
theta at different statically applied pressure distributions. The
program sets appropriate axes based on minimum and maximum values
that are tracked during execution of the static Fortran program.
The static MATLAB program is located in Appendix J.

17

Boundary Condition Options and Examples

This section is a brief discussion of different boundary conditions
available with both Fortran programs. An example of output from
each boundary condition is presented in the next three sections.

Pinned Top" - "Pinned Bottom":

This boundary condition restricts the movement of the node points
at theta minimum and theta maximum on the canopy to zero
deflection. Numerically this is imposed in the dynamic program by
setting the velocities and accelerations of the two end point nodes
to zero. For the static program the deflections at the two nodes
are restricted to zero deflection. The canopy is pinned at these
points for all time. The spherical membrane model does not include
bending, so large gradients can occur at these pinned points.
Clustering node points near a pinned boundary provides better
resolution.

"Symmetry Top" - "Pinned Bottom":

This boundary condition restricts the movement of the node point at
theta maximum to 2zero deflection and allows for a symmetry
condition at theta minimum (note that theta minimum must be
specified as zero degrees for this boundary condition). Numerically
the theta maximuin boundary condition is imposed in the dynamic
program by setting the velocities and accelerations at node point
number "nth" to zero and in the static program by setting the
deflection at theta maximum equal to zero.

For the static case at theta minimum equal to zero degrees the
symmetry boundary is obtained by setting the tangential deflection
(which is equivalent to the global "X" deflection) of node point
number one equal to zero. The normal deflection condition at node
point number one is replaced with a zero slcpe equation. This
condition yields a relationship between node points number one and
two through an FDE representing the slope at the peak node and set
equal to zero.

For the dynamic program we need conditions on velocities and
accelerations at theta equal to zero degrees. The tangential
velocity and accelerations at theta minimum must be zero to keep
the node point on the global "Y" axis and preserve symmetry. ihe
condition on the normal velocity and the normal acceleration are
simply the governing differential equations modified by imposing
the zero slope condition. These equations must include the fact
that the tangential deflection at node number one is equal to zero.
The process becomes difficult due to the singularity at theta equal
to zero degrees in the governing equations. The singularity is
removed by applying L‘Hopitals rule to each term in the form of

18

zero over zero. The derivation is shown in Appendix C.

"Symmetry Top"” - "Infinite Mass Bottom":

This boundary condition must have theta minimum equal to zero. The
symmetry top boundary condition described in the last paragraph is
used at node number one. The boundary node at theta maximum is
restricted to motion along a circular path in the global "X,Y"
coordinate system. The radius of the circle is defined as the
distance from the undeformed bottom edge of the canopy at theta
maximum to the point of intersection with the global "Y" axis along
a line that is tangent to the bottom edge of the undeformed canopy.
This condition requires the value of theta maximum to be greater
than 90 degrees. The lines can be visualized as a conical cone that
is fixed at the apex (intersection with the "Y" axis) and connected
to node number "nth" at theta maximum on the spherical membrane.
The radius of the circle (line length) is a constant defined by the
undeformed geometry. The canopy is required to remain tangent to
the lines for all time. The development of this boundary condition
is presented in Appendix D.

19

Example 1

Table one contains the dimensional input parameters that are kept
constant for the three examples that follow.

TABLE 1 Constant Input Parameters for Example Problems

Input Parameter Description In;;:ﬁValue & Dimensions
R = Radius of Sphere 300 inches
h = Thickness of Membrane 0.005 inches
E = Young'’s Modules 30000. psi
v = Poisson’s Ratio 0.3
p = Density of Membrane Material 9.0E-06 lbs*sec?/inches*
c,=C,= Damping Constants 0.3

The dynamic program was run with the following input. The number of
node points used to represent the canopy is 30, theta minimum is 40
degrees, theta maximum is 140 degrees, clustering at both ends with
beta equal to 1.2. The pressure distribution applied is a step
pressure at each node point that is constant with time. The
pressure varies parabolically with theta. The pressure distribution
is symmetric about theta equal to 90 degrees. The pressure has a
value of 0.0 psi at theta minimum and theta maximum. The pressure
reaches a maximum value of -0.2 psi at theta equal to 90 degrees.
The run started at time equal to 0.0 seconds and ran through 50000
time steps of 0.000001 seconds each. The program saved data at 100
time steps and finished at time equal to 0.05 seconds. The value of
0.05 seconds corresponds to a nondimensional time of 10.01. The
displacements and velocities were set to zero at every node point
for initial conditions at time equal to 2zero. Therefore, the
membrane starts from rest in an undeformed state. Figure 3 shows
the undeformed shape and initial conditions shape superimposed.
Four nondimensional deformed shapes are shown at the first four
saved nondimensional time steps corresponding to iteration numbers
500, 1000, 1500, and 2000. The nondimensional tangential and normal
deflections at each of these times are shown in Figures 4 and 5,
respectively. The symmetry of the problem is clearly evident.

A plot of the nondimensional normal deflections and nondimensional
normal velocities for three separate node points as a function of
time is shown in Figures 6 and 7, respectively. The three tracked
nodes are node points 5, 10, and 15, which correspond to theta
values of 48.05, 64.88, and 88.28 degrees, respectively. The
amplitudes are slowly damping out due to the nonzero damping
ratios. The hoop and meridional strains and stresses as a function
of theta for the first four nondimensional time steps are shown in
Figures 8 to 11.

20

MEMBRANE SHAPE AT DIFFERENT TIME STEPS
08 . : - , _
0.6} 1
04}]
o = UNDEFORMED SPHERE
02} * - INITIAL SHAPE AT TIME =0 ;
2 — = DEFORMED SHAPE AT TIME = 0.20194
= of x = DEFORMED SHAPE AT TIME = 0.40369 1
- SOLID = DEFORMED SHAPE AT TIME = 0.60543
02k + = DEFORMED SHAPE AT TIME = 0.80717 4
04}]
-0.6 r .
-1 0.5 0 05 1
X AXIS

Figure 3. Membrane Shape at Five Different Time Steps

x103 U DEFORMATION VERSUS THETA

~T T

* - TANGENTIAL DEFLECTION AT TIME =0
— = TANGENTIAL DEFLECTION AT TIME = 0.20194 1
x =TANG L DEFLECTION AT TIME = 0.40369

SOLID = TANGENTIAL DEFLECTION AT TIME = 0.60543
T~TANG L DEFLECTION AT TIME = 0.80717

U DEFORMATION
o

e, n o

S

0 50 6 70 80 % 100 110 120 130 140

THETA IN DEGREES

Figure 4. Tangential Deflections Versus Theta at Five Times

21

0 S eman :: oY o :' _______
O01F N\ e J
002} i
z 0.03 4
8
£ 004t .
z
8 005+ .
i * =N D N AT TIME
g 006 — = NORMAL DEFLECTION AT TIME =0.20194 1
007 x = NOJ DEFLECTION AT TIME = 0.40369 1
“[soLID=NO DEFLECTION AT TIME = 0.6054)
008+ + =NORMAL CTION AT TIME = 0.8071 |
0.09 9

40 50 60 70 80 90 100 110 120 130 140

Figure 5. Normal Deflections Versus Theta at Five Times

-0.05

W DEFLECTION
&

-0.15

0.2

THETA IN DEGREES

W DEFLECTION VERSUS TIME

e, — - r

T

o0=PLOTFORNODE 4 5 1
* = PLOT FOR NODE # 10

x = PLOT FOR NODE # 15

i 2 3 4 S 6 1 8 9

Figure 6. Normal Deflections Versus Time

22

NORMAL VELOCITY

NORMAL VELOCITY VERSUS TIME

HOOP STRAIN

0.1
0.05

0
005
0.1

0= PLOT FOR NODE # §
0.15¢ * = PLOT FOR NODE # 10
x = PLOTFOR NODE # 15
o 1 2 3 4 5 6 1 8§ 09
TIME
Figure 7. Normal Velocities Versus Time
HOOP STRAIN VERSUS THETA AT FIVE TIMES
0.09} 4
0.08} :
0.07¢]
0.06} :
0.05+ .
0.041 1
0.03F 4.
0.02t 4
001 // SPEID = HOOP STRAIN AT TIME = 0.6 .
+ = HOOPSTRAIN AT TIME = 0.80717 ™" ==emeee___
] e X i e L . N e " ARG,
40 SO 60 70 8 9% 100 110 120 130 140

THETA IN DEGREES

Figure 8. Hobp Strain Versus Theta at Five Times

23

MERIDIONAL STRAIN VERSUS THETA AT FIVE TIMES
0.08 - - v T T v v + v

MERIDIONAL STRAIN

o s 60 70 80 9 100 110 120 130 140
THETA IN DEGREES

Figure 9. Meridional Strain Versus Theta at Five Times

HOOP

STRESS VERSUS THETA AT FIVE TIMES

Y v T

HOOP STRESS

40 50 &0 LY 80 90 100 110 120 130 140
THETA IN DEGREES

Figure 10. Bobp Stress Versus Theta at Five Times

24

MERIDIONAL STRESS VERSUS THETA AT FIVE TIMES

T L

p—T —

MERIDIONAL STRESS

AL STRESS AT TIME = 0.20194
IONAL STRESS AT TIME = 0.40369
LID = MERIDIONAL STRESS AT TIME = 0.60543

40 S0 60 70 80 9 100 110 120 130 140
THETA IN DEGREES

Figure 11. Meridional Stress Versus Theta at Five Times

25

Example 2

The dynamic program with the "symmetry top"-"pinned bottom" was run
with the following input. The number of node points used to
represent the canopy is 20, theta minimum is 0 degrees, theta
maximum is 110 degrees, clustering at theta maximum was used with
beta equal to 1.2. The pressure distribution applied is a step
pressure at each node point that is constant with time. The
pressure varies parabolically with theta. The pressure has a value
of ~-0.2 psi at theta minimum, -0.1 psi at theta equal to 70 degrees
and 0.0 psi at theta maximum. The run started at time equal to 0.0
seconds and ran through 100,000 time steps of 0.000001 seconds
each. The program saved data at 100 time steps and finished at time
equal to 0.1 seconds. The value of 0.1 seconds corresponds to a
nondimensional time of 20.02. The displacements and velocities were
set to zero at every node point for initial conditions. Therefore
the membrane starts from rest in an undeformed state. Figure 12
shows the undeformed shape and initial conditions shape
superimposed. Four nondimensional deformed shapes are shown at the
first four saved nondimensional time steps corresponding to
iteration numbers 1000, 2000, 3000, and 4000. The nondimensional
tangential and normal deflections at each of these times are shown
in Figures 13 and 14, respectively. A plot of the nondimensional
normal deflections and nondimensional normal velocities for three
separate node points as a function of time is shown in Figures 15
and 16, respectively. The three tracked nodes are node points 5,
10, and 15 which correspond to theta values of 32.63, 67.83, and
93.47 degrees, respectively. The amplitudes are slowly damping out
due to the nonzero damping ratios. The hoop and meridional strains
and stresses as a function of theta for the first four
nondimensional time steps are shown in Figures 17 to 20.

26

MEMBRANE SHAPE AT DIFFERENT TIME STEPS

Laf T ' M R

Y AXIS

o = UNDEFORMED SPHERE

* = INITIAL SHAPE AT TIME = 0

— = DEFORMED SHAPE AT TIME = 0.4055

x = DEFORMED SHAPE AT TIME = 0.80899
SOLID = DEFORMED SHAPE AT TIME = 1.2125

+ = DEFORMED SHAPE AT TIME = 1.616

ke L, A .

-1 05 0 0.5 1
X AXTS

Figure 12. Membrane Shape at Five Different Time Steps

U DEFORMATION VERSUS THETA

DEFLECTION AT TIME = 0
> 003} ~ = TANGENTML DEFLECTION AT TIME = 0.4055

&
®

-0.045 — . ~ - ;
0 20 40 60 80 100
THETA IN DEGREES

Figure 13. Tangential Deflections Versus Theta at Five Times

27

W DEFORMATION

Figure 14. Normal Deflec*ions Versus Theta at Five

W DEFLECTION

W DEFORMATION VERSUS THETA

0.05

0.1

0.05

-0.05

0.1

0.15

0.2

0.25

03

<0.35

0 2 4 6 8 10

>

........

ON AT TIME = 1.2125
ON AT TIME = 1.616

—

..........
.......

L

0 20 40 60 80 100

THETA IN DEGREES

" DEFLECTION VERSUS TIME

|-

i

T _—

o=PLOTFORNODE # 5 -
*=PLOT FORNODE # 10
x = PLOT FOR NODE # 15

TIME

12 14 16 18

Figure 15. Normal Deflections Versus Time

28

Times

NORMAL VELOCITY VERSUS TIME

NORMAL VELOCITY

0.1

0.15

A — 7

-

o=PLOT FOR NODE # 5
* = PLOT FORNODE # 10
x = PLOT FOR NODE # 15

12 14 16 18

Figure 16. Normal Velocities Versus Time

HOOP STRAIN VERSUS THETA AT FIVE TIMES

0.16

0.14

0.12

0.1

0.06

0.041

0.02

HOOP STRAIN
(=]
&

g —

* = HOOP STRAIN AT TIME =0
~ = HOOP STRAIN AT TIME = 0.4055

+ = HOOP STRAIN AT TIME = 1.616

.......
.......
......

Figure 17. Hoop Strain Versus Theta at Five Times

20 40 60

THETA IN DEGREES

29

MERIDIONAL STRAIN VERSUS THETA AT FIVE TIMES

g T 8

0.16 F 4

0.14
0.12
0.1

0.08

0.06

MERIDIONAL STRAIN

* = MERIDIONAL STRAIN AT TIME =
0.041 —~ = MERIDIONAL STRAIN AT TIME = 0.4055

................

002} SOLID = MERIDIONAL STRAIN-AT-TIME = 1.2125 .

.......
.........

0 20 40 60 80 160
THETA IN DEGREES

Figure 18. Meridional Strain Versus Theta at Five Times

HOOP STRESS VERSUS THETA AT FIVE TIMES

r— T T

0.2

0.15

0.1

HOOP STRESS

* . HOOP STRESS AT TIME = 0
0.05 ~ = HOOP STRESS AT TIME = 0.4055
[__.._x_=HOOP STRESS AT TIME = 0.80899

............
.......

+ =HOOPSTRESSATTIME=1616 e
0 20 40 60 80 100
THETA IN DEGREES

Figure 19. Hoop Stress Versus Theta at Five Times

30

MERIDIONAL STRESS VERSUS THETA AT FIVE TIMES

- T

0.2

0.15

01

MERIDIONAL STRESS

* « MERIDIONAL STRESS AT TIME =
0.05+ — = MERIDIONAL STRESS AT TIME = 0.4055

deg

0 20 40 60 80
THETA IN DEGREES

Figure 20. Meridional Stress Versus Theta

31

100

at Five Times

Example 3

The dynamic program was run with the following input. The number of
node points used to represent the canopy is 20, theta minimum is 0
degrees, theta maximum is 110 degrees, clustering at theta maximum
with beta equal to 1.1 was used. The pressure distribution applied
is a step pressure at each node point that is constant with time.
The pressure varies linearly with theta. The pressure has a value
of -0.6 psi at theta minimum and -0.3 psi at theta maximum. The run
started at time equal to 0.0 seconds and ran through 150,000 time
steps of 0.000001 seconds each. The program saved data at 100 time
steps and finished at time equal to 0.15 seconds. The value of 0.15
seconds corresponds to a nondimensional time of 30.03. The
velocities were set to zero at every node point for initial
conditions. The initial conditions on displacement at every node
point were generated by the static program. The pressure
distribution used to generate the initial shape was also linear.
The pressure varied from -0.4 psi at theta minimum to 0.1 psi at
theta maximum.

Figure 21 shows the deformed shapes generated by the static program
at eight intermediate pressure steps with the pressure distribution
used to generate the initial conditions. Therefore the initial
conditions are that the membrane starts from rest in a prescribed
deformed state. Figure 22 shows the undeformed shape and initial
conditions shape as separate curves along with four nondimensional
deformed shapes at the first four saved nondimensional time steps
corresponding to iteration numbers 1500, 3000, 4500, and 6000.

The nondimensional tangential and normal deflections at each of
these times are shown in Figures 23 and 24, respectively. Plots of
the nondimensional normal deflections and nondimensional normal
velocities for three separate node points are shown as a function
of time in Figures 25 and 26, respectively. The three tracked nodes
are node points 5, 10, and 15, which correspond to theta values of
37.5, 74.73, and 97.79 degrees, respectively. The amplitudes are
slowly damping out due to the nonzero damping ratios.

The hoop and meridional strains and stresses for four
nondimensional time steps are shown as a function of theta in
Figures 27 to 30. Figure 31 shows the deformed shape of the
membrane at different stepped up pressures. The final shape
corresponds to the pressure distribution used in the dynamic run.

32

STATIC MEMBRANE SHAPE AT DIFFERENT STEPPED PRESSURES

15F — Y -

1r i

05}]

of .

E 0S5k 2 s J
< Z s
> Z s

<1 -,% § 4

-5t 2 H .

25t 4

o = UNDEFORMED SPHERICAL SHAPE
N " k' F— 2 N
-3 -2 -1 0 1 2 3

X AXIS

Figure 21. Static Solutions up to Initial Pressure Distribution

MEMBRANE SHAPE AT DIFFERENT TIME STEPS

™ T T -

Y AXIS
)
ta

0
—
L]
* ©

-15F - = DEFORMED SHAPE

x = DEFORMED SHAPE / :
SOLID = DEFORMED SHAPEAT TIME = 1.8177 T
25l + =~DEFORMED SHAPE AT TIME £ 24229
: = LINE LOCATION AT EACH TIME STEP

s i i

-3 -2 -1 0 1 2 3
X AXIS

2t

Figure 22. Membrane Shape at Five Different Time Steps

33

U DEFORMATION VERSUS THETA

0051

™ r—

* = TANGENTIAL DEFLECTION AT TIME = 0

- = TANGENTIAL DEFLECTION AT TIME = 0.60724

x = TANGENTIAL DEFLECTION AT TIME = 1.2125
SOLID = TANGENTIAL DEFLECTION AT TIME = 1.81
= TANGENTIAL DEFLECTION AT TIME = 2.422

z
Qo
o
s 01 L
&
2
o
= 0.15b

0.2 -

0 20 40 60 80
THETA IN DEGREES

Figure 23. Tangential Deflections Versus Theta at Five Times

W DEFORMATION VERSUS THETA

100

0.2

W DEFORMATION

T -T

* .'NORMAL DEFLECTION AT TIME = 0

— = NORMAL DEFLECTION AT TIME = 0.60724 e

x = NORMAL DEFLECTION AT TIME = 1.2 ’,.-"‘
SOLID = NORMAL DEFLECTION AT = 1.§l-‘7‘f
+ = NORMAL DEFLECTION AT = ?;4229

60

40
THETA IN DEGREES

100

Figure 24. Normal Deflections Versus Theta

34

at Five Times

W DEFLECTION

NORMAL VELOCITY

W DEFLECTION VERSUS TIME

02 . —
o= PLOT FOR NODE # 1
* < PLOT FOR NODE # 8
ok x = PLOT FOR NODE # 15

0 5 10 15 20 25

Figure 25. Normal Deflections Versus Time

NORMAL VELOCITY VERSUS TIME

03
02}
o1b
0
01
02
0= PLOT FOR NODE # 1
03 * < PLOTFORNODE # 8 1
x = PLOT FOR NODE # 15
044 — —-— v y >
0 5 10 15 2 25

TIME

Figure 26. Normal Velocities Versus Time

35

HOOP STRAIN VERSUS THETA AT FIVE TIMES

\d ™ T

HOOP STRAIN

OF * ~HOOPSTRAIN AT TIME = . =
— = HOOP STRAIN AT TIME = 0.60724
01l X ~HOOPSTRAIN AT TIME = 1.2125
SOLID = HOOP STRAIN AT TIME = 1.8177 1
+ =HOOP STRAIN AT TIME = 2.4229

2 2 20 60 M) 100

THETA IN DEGREES

..
.

Figure 27. Hoop Strain Versus Theta at Five Times

MERIDIONAL STRAIN VERSUS THETA AT FIVE TIMES

T Y

06}]

05 4

MERIDIONAL STRAIN

0.1 x = MERIDIONAL STRAIN AT TIME = 1.2125
SOLID = MERIDIONAL STRAIN AT TIME = 1.8177

L]
i

+ = MERIDIONAL STRAIN AT TIME = 2.4229

o - P

0 20 40 7 %0 100
THETA IN DEGREES

Figure 28. Meridional Strain Versus Theta at Five Times

36

HOOP STRESS VERSUS THETA AT FIVE TIMES

\

\
oSt
04}
@ o3
& 02— el
T T e

0.1 * . HOOP STRESS AT

~ = HOOP STRESS AT TIME = (.

or x = HOOP STRESS AT TIME = 1.2125

SOLID = HOOP STRESS AT TIME = 1.8177
+ =HOOP STRESS AT TIME = 2.4229

—

0.1

]

-
~..

A

0 20 40 60 80
THETA IN DEGREES

Figure 29. Hoop Stress Versus Theta at

100

Five Times

MERIDIONAL STRESS VERSUS THETA AT FIVE TIMES

¥ T

0.7¢
0.6F
V___—-/
a oSt
&
é ——
-~ 04
<
z
=}
8 03k e
&
=

* = MERIDIONAL STRESS AT TIME = 0

x = MERIDIONAL STRESS AT TIME ~ 1.2125

---------- 1

O MERIDIONAL STRESS AT FME~08014]
— = MERIDIONAL 2

T

-

0.1F SOLID = MERIDIONAL STRESS AT TIME = 1.8177 A
+ = MERIDIONAL STRESS AT TIME = 2.4229
o A e T A b
0 20 40 60 80 100

THETA IN DEGREES

Figure 30. Meridional Stress Versus Theta

37

at Five Times

STATIC MEMBRANE SHAPE AT DIFFERENT STEPPED PRESSURES

15F -

=
Z S
z S
Z £3
z s
$
S
Z S
Z 3
Z §
Z $
Z E3
Z $
= -~
Z §
Z $
S 3
Z, §
Z §
3 g
2 §
% H
2 §
2 s
% $§
:
2 s

25k

o = UNDEFORMED SPHERICAL SHAPE

3 -2 -1 0 1
X AXIS

Figure 31. Static Solutions up to Final

38

Pressure Distribution

Related Topics

The spherical membrane model is not expected to predict the entire
structural dynamic opening of a canopy. However, the model is
expected to provide valuable insight into problems associated with
coupling and requirements for future models. This section of the
report presents some other modifications and comparisons that were
made while working with the spherical membrane model.

Static Comparison with NISA Finite Element Model:
The spherical membrane equations are nonlinear. The nonlinear term

is introduced in the meridional strain equation presented in
Appendix A equation A-~1. The effect of this nonlinear term will
become evident in this short section. The spherical membrane
equations were incorporated into Fortran packages for solution.
These programs are source codes which are easily modified. All
future structural dynamic models must provide source codes if they
are to be coupled with CFD codes. A search is on going for existing
software with modifiable source codes that are capable of solving
the structural dynamic behavior of canopies. So far, no codes have
been found that can solve this problem. A few simple, statically
loaded thin-shell finite element models were run using the NISA
(see reference 4) finite element package. These runs were made with
two purposes in mind. (1) To compare the static spherical membrane
results to thin-shell finite element results. (2) To determine what
elements were capable of modelling the axisymmetric problem and
determine NISA's capabilities. The results of these runs are
presented in Appendix F.)

Vent and Annular Canopy Boundary Conditionss

Other boundary conditions than the three already mentioned were
investigated briefly in an attempt to model other types of canopy
designs. The ability to include a vent that is not pinned is an
important feature to include in any parachute model. This feature
should also be capable of modelling a large vent opening which
leads to the modelling of annular parachutes. An accurate model of
an annular parachute or a vent model must be capable of including
lines that are connected to a variety of locations. The spherical
membrane model does not have this capability but the inclusion of
a movable peak node could be a useful option in the coupling
problem. The usual procedure for a "free" or cantilever boundary
condition in plates or shells is to prescribe a moment-free and
shear-free end condition. However, these options are not available
in membrane theory because bending is not included in the theory.
An approximation was made to model an annular canopy boundary
condition at the first node point for any theta minimum value. This
option was included with the pinned bottom and infinite mass bottom
boundary conditions for the static Fortran programs. The condition
was coupled with only the pinned bottom boundary condition for the
dynamic Fortran programs. A brief description of the approximation
along with an example of static output is presented in Appendix G.

39

Discussion of Model Tests and Limitations

This section gives a brief review of the model’s potential and some
limitations. The spherical membrane model was not chosen with the
intention of modelling the entire opening process of a canopy. The
model was chosen because of its similarity to canopies and for the
purpose of being coupled with the computational fluid dynamics
package SALE. The Fortran programs are expected to be useful tools
in debugging the problems associated with coupling to nonlinear
sets of equations through a boundary. The Fortran programs are
numerically capable of solving the spherical membrane problem with
"large" deflections. These results are inaccurate for any
physically real membrane. The spherical membrane equations are
developed and based on deformations and pressure loadings on the
undeformed membrane surface. The accuracy of the equations becomes
increasingly inaccurate as deformations grow from the undeformed
shape.

The Fortran programs described in this report were tested
extensively. One sequence of tests ran the dynamic program with all
input the same except for the number of node points used to
represent the membrane. The programs converge with damping and
oscillate through the same path with 11,20,30,60, and 100 node
points being used to represent the membrane. The time for the runs
became excessive as the number of ODE’s being solved increased from
44 to 400. Another set of tests ran the dynamic program with all
parameters the same except for the degree of clustering used at one
or both ends of the membrane. Again, the program converged to the
same results. The resolution of the solution near heavy clustering
or for a large number of node points would of course increase for
these tests. Also, many dynamic runs were made by starting at some
deformed position and applying some type of time-dependent load for
a given length of time. Then at a prescribed time the load would be
held constant with time and the membrane allowed to damp out. The
final damped out deflection was checked against the solution
obtained using the static Fortran program with the same final
pressure distribution. The final deflections were always the same.

The spherical membrane programs do have limitations. One problem
was encountered while executing the dynamic program with the pinned
top pinned bottom boundary conditions. The membrane initial
conditions require that all node points start from rest and the
deflections are an inflated shape of moderate deflection. The
membrane was not loaded (pressure distribution set equal to zero
for all nodes and all time). The membrane was damped and the
purpose of the test run was to see if the membrane would damp out
its motion to the undeformed spherical shape. The run will work for
small initial displacements but will not work for moderate or large
initial displacements. The problem is similar to that encountered
in a snap-through problem. The membrane will move towards the
undeformed shape and move into a state of pure compression. At some
critical value starting with the node points next to the pinned end

40

nodes (for initial displacements that are generated from a uniform
pressure distribution) the solution becomes unstable and the
deflections grow until the program crashes. The critical value and
a more detailed analysis of this phenomena was not conducted
because this set of initial conditions and loading conditions is
not expected in the coupling problem.

Other problems are associated with the fact that all calculations
are based on the undeformed geometry of the spherical membrane.
This includes the inability to accurately determine the vertical
load versus time graph for moderate and large deflections. The
pressure distribution is applied to the undeformed sphere but the
coupled problem will be applying pressures based on the current
deformed geometry. Other problems and limitations will inevitably
be found during the coupling process.

41

Conclusion

The major purpose of this report is to present a structural dynamic
canopy model being used by the U.S. Army Natick Research,
Development and Engineering Center as part of a larger coupling
problem. The coupling of the spherical membrane model with the
computational fluid dynamics code SALE is expected to aid in the
prediction of the complex opening problem of parachutes. The
solution of the opening problem will provide essential information
to aid in the design of high-speed and low-altitude airdrop
systems.

A static set of nonlinear spherical membrane equations are modified
to model the dynamic response of a spherical membrane to a time-
dependent pressure distribution. The two governing partial
differential equations were converted into a system of nonlinear
first order differential equations, which were finite differenced
in space and solved numerically. The Fortran programs described in
the report are capable of computing large deflections from the
undeformed spherical shape. These large deflections are not an
accurate model of a physical membrane, and the model was not chosen
with that intention. The model can however reproduce these large
"numerical” deflections which will enable Natick personnel to
investigate the problems associated with 1large amplitude
deflections and rapid motion in the coupling problem.

A set of Fortran programs have been written to solve the spherical
membrane model equations. The programs have been tested with a wide
range of input parameters and several examples are presented. The
programs are also capable of solving the spherical membrane problem
with a user-defined number of arbitrarily spaced node points. These
features are incorporated to permit a relatively small number of
modifications for the coupling of the codes with the significantly
more complicated computational fluid dynamics package SALE. The
major conclusions of this report are listed below.

(1) A spherical membrane model has been chosen as a first step to
represent the structural dynamic behavior of canopies.

(2) A set of Fortran programs capable of solving a large variety of
dynamic and static spherical membrane problems have been written
and tested with a variety of different input parameters. A modified
set of these programs is currently being coupled to the CFD code
SALE at Natick.

(3) A MATLAB program has been written for postprocessing the
results of the Fortran programs. The MATLAB program will also be a
useful tool for future structural dynamic canopy models and for the
structural results from the coupling problem.

(4) The spherical membrane model is not capable of solving the full
opening process of a parachute because the model includes

42

compressive stresses and is not accurately modeling large
deflections. However, the model is expected to provide insight into
the difficulties of the coupling problem.

43

References

1. Amsden, A.A., Ruppel, H.M., and Hirt, C.W. "SALE: A
Simplified ALE Computer Program for Fluid Flow at All Speeds."
Los Alamos Scientific Laboratory Report No LA-8095, 1980.

2. Ferziger, Joel H. "Numerical Methods for Engineering
Application.” John Wiley and Sons. N.Y. 1981.

3. Hoffmann, Klaus A. "Computational Fluid Dynamics for
Engineers." Engineering Education System™ P.O. Box 8148 Austin,
TX 78713-8148, 1989.

4. NISA, Engineering Mechanics Research Corporation. P.O. Box
696, Troy, Michigan 48099.

5. SLATEC Library, A collection of FORTRAN mathematical
subprograms available through the National Enerqgy Software Center
(NESC)

6. Stoker, J.J. "Nonlinear Elasticity." Gordon and Breach. N.Y.
1968.

44

Appendix A. Development of Dynamic Membrane Equations

This Appendix section describes the equations (A-1)-(A-4) of this
report. The addition of inertia terms and damping terms to the
static equilibrium equations developed by Stoker are discussed
first. The Stoker equilibrium equations state that the sum of the
forces in the tangential and normal direction of any differential
element of the spherical membrane must sum to zero. The equations
developed by Stoker are shown in equations (A-1)-(A-4) when the
right hand side of the equilibrium equations is set to zero and all
partial derivatives with respect to theta are changed to ordinary
derivatives. Stoker derives these equations by applying the
principle of minimum potential energy. The addition of inertia
terms requires that the sum of the forces be equal to the mass
times the respective component of acceleration of the differential
element. The acceleration is defined as the second partial
derivative of the corresponding displacement with respect to time.
The mass is computed as the product of the membrane material
density and the volume of the differential element. The damping
terms are included as motion resistors. They apply restoring forces
linear in magnitude to the respective velocity at any location on
the sphere. The damping forces are not modelling any realistic
damping process but are included to help stabilize the solution
numerically. The damping also allows the user to compare the
results of a completely damped out motion from a time-independent
load to the solution obtained from the same load applied to the
static problem. Equations (A-1)-(A-4) are six governing equations
for six unknowns which describe the dynamic response of the
spherical membrane.

Stress Strain

(A-1)
E£°=09—V0. E8.=0"—'V00
Strain Displacement
(A-2)
1, ,0u_ 1 ,0w_ ., _1 _
€o ”R('B'B' w)+w(.a.6.+u) €, .R(ucote w)
Equilibrium: u-direction
(A-3)

'596' (o,8in0) -_oﬁile (.g.;+u) —oocosﬂ=cu.g.% +pRsin® _g_’t_uf

Next, the six governing equations are reduced to two partial
differential equations. The first step taken is to rewrite the

45

Equilibrium: w-direction
(A-4)

194 . o 0w
Rsin®
P FE3

730 [0p81n6 (g.g+u)]+(oo+o,+§§)sin6=c aw

Yot

stress strain equations in terms of strains. Next, substitute the
values of strains in terms of displacements from the strain
displacement equations. The resulting two equations define each
stress in terms of displacements. These two equations are
srbgtituted into the two equilibrium equations to yield the two
governing partial differential equations involving only the
tangential and normal deflections as unknowns. These equations are
shown in equations one and two of the "Formulation and Analysis”
section of the report.

46

Appendix B. Development of Finite Difference Eguations

This Appendix derives the Second order accurate FDE’‘s with a
variably spaced nodal grid point option. The derivation of the
FDE’'s starts with the standard second order Lagrange Polynomial
shown in equation (B-1) (see reference 2).

(x-x,) (x-X,,,)
(X X)) (X, —Xy,,)

(x-Xx,,)(xX-x,,,)

f(x)=£f(x,,) (x-x,,) (x,-%x,,,)

+L(x,)

(B-1)
(x-x,_,)(x-x,)

f(x
(%41) (X4,,-%X;_,) (X,,-X,)

Note that for this general derivation x is the independent
variable, £ is the dependent variable and h is the spacing defined
as h;=x,,,-x,. The Lagrange Polynomial is differentiated with respect
to (x) and evaluated at the desired nodes. Evaluation at x=x,
yields the central difference formula. Evaluation at x=x, , yields
the forward difference formula, and evaluation at x=x,,, yields the
backwards difference formula. The backward, central and forward
difference formulas for the first derivative are shown in equation
(B-2) where H is defined by H=h,,,+h,.

2h, .+h
£ (%,,,)= f(x“)ﬁ f(xi)_b:gl_,,,f(xid) 11.1 :
+1 H 013

(B-2)

" - h,,, 1 h,
' (x)=-f(x,,) +f(x1)m+f(x,,l)m

hthy,, £(x,)

1 (x,,)=-f(x,_ 1)—71_3_

m f(xiol)m

The second derivative can be computed from the Lagrange Polynomial
by differentiating with respect to x twice. The result is a
constant second derivative between any given three adjacent node
points. The second derivative is shown in equation (B-3).

£ (X, 5K X10) = (X0) pog £ () i —+ £ (Xu) og (B-3)

1%%1+1

47

Appendix C. Development of Symmetry Boundary Condition

This Appendix derives the mathematical and numerical statements
representing the symmetry boundary condition at theta minimum equal
to zero degrees. As previously mentioned, the tangential velocity
and acceleration at the peak node must be set to zero for the
dynamic program. The tangential displacement must be set equal to
zero for the static Fortran program. The value of the normal
acceleration at node number one is found by applying the
equilibrium equation at that point. The problem is that many of the
terms in the equilibrium equation are undefined at theta=0.0. For
example cot(0) is undefined. The undefined terms are in the form of
zero/zero so L'Hopital’s Rule is applied to each of the problem
terms as follows;

cotB dudw _ du d?*w

a @ av ao*
dw —-w d*w
wcot0 HB' W

cot()(.aa.)3 -0
ucot()(m.)2 -0

2 dw
u cotﬂm -0 (C-1)
du -— du 2
® ()

uwcoth —»w du

a9
ulcot® —0

du
to
ucott =~ m
2
u cotB d’w du d*w

a0 q02

ucoto

The first term shown in equation (C-1) is derived in equation (C-2)
to illustrate the method.

du dw du dw
du dw cosﬁ Fﬁ[cosb-5 r-] E . du d*w c-2
cot8 o i ® o, oY)
sin a; [8inB] a®? (9.0

The other terms are derived by the same procedure. The acceleration
at theta minimum equal to zero is rewritten by applylng the
symmetry boundary conditions using the expressions from equation C-

48

Appendix D. Development of Infinite Mass Bounda Condition

This Appendix derives the mathematical and numerical statements
representing the infinite mass boundary condition at theta maximum.
Figure D-1 shows a schematic of the spherical membrane with
imaginary lines. The lines have a fixed length L and the model is
fixed at point A to restrict rigid body motion.

r Y

Figuré D-1. Infinite Mass Boundary Condition at 0pax

The point A defines the center of a circle with a radius of length
L. The point A is defined by the intersection of the line (tangent
to the bottom edge of the membrane) with the global Y axis. The
spherical membrane still has its undeformed geometric center at the
origin of the global XY coordinate system. The infinite mass
boundary condition requires the bottom edge node of the sphere to
follow the circular arc defined by point A and radius L. The
membrane must also intersect the circular arc at a normal angle.
This condition is equivalent to restricting discontinuities at the
connection between the bottom node point and the imaginary lines.

These conditions require that the value of theta maximum be greater
than 90 degrees. The line length L is defined by the angle theta

49

maximum and the radius of the undeformed spherical membrane.
Equation (D-1) is the equation of the circular arc centered at
point A of radius L.

2= R?
tan (6max-90)2

2 R -
X D S @nax-s07) (>=H)

Static Program Implementation:
The infinite mass boundary condition was added as an option to the

static Fortran program by writing the conditions in two equations.
The two equations are minimized by the SLATEC subroutines. The
first equation requires node number "nth” to follow the prescribed
circular arc in equation D-1. The equation is written in terms of
tangential and normal displacements and the radius squared term is
subtracted from both sides. This yields one condition that must be
minimized. The second condition is obtained by subtracting the
slope of the lines from the slope of node point "nth" which is
calculated from a backwards difference formula using node points
"nth”, "nth-1", and "nth-2". The difference in slopes must be zero
if the "tangent" boundary condition is to be met. This equation can
be written in terms of tangential and normal deflections.

Dynamic Program Implementation:

The infinite mass boundary condition applied to the dynamic problem
was harder to derive. The boundary conditions are in terms of
displacements but the program needs conditions on velocities and
accelerations. The problem was solved by actually solving the
dynamic program for every node except node "nth". The system of
equations needed is reduced to 4*(nth-1). The components of
velocity at node point "nth" are interpolated from the velocities
at node points "nth-1", "nth-2", and "nth-3". The displacements at
node point "nth" are calculated within the user-supplied function
evaluation subroutine used by the SLATEC software. The value of the
displacements at node point "nth" are needed to evaluate the
acceleration function of node point "nth-1" within the function
evaluation subroutine. The value of the displacements at node point
"nth" is calculated within this subroutine as described in the
"Static Program Implementation” section. However, a fifth order
backwards finite difference equation is used to compute the slope
at node point "nth". The resulting two nonlinear equations for the
current tangential and normal displacements at node point "nth" are
solved by calling the DNSQE.f subroutine within every call to the
function evaluation subroutine.

50

Appendix E. Comparison with Static Results Presented by Stoker

Stoker (see reference 5) gives results to a sample spherical
membrane problem. The same example problem was run with the static
Fortran program described here and the results compared. The input
parameters used by Stoker are defined in one nondimensional
parameter K. K is defined in equation (E-1).

=PR__ _ -
=i 1.56E-03 (E-1)

The pressure is taken as a constant value for all values of theta.
The value of theta minimum equals 0.0 degrees and the value of
theta maximum is 11.4591 degrees. The problem can be visualized as
a dome with pinned edges and a constant internal pressure. The
values needed for the static Fortran program are dimensional.
Therefore the values of the thickness, radius, and Young’s modules
where specified and the corresponding value of the constant
pressure was determined from equation (E-1). The value of Poisson’s
ratio was also kept the same as Stokers value of 0.3. A listing of
the input values chosen is shown in Table E-l.

TABLE E-1 Definition of K in Stoker Text

!I Input Parameter Description ==;2put Value & Dimensions “
- R = Radius of Sphere 300 inches-]
h = Thickness of Membrane 0.005 inches
E = Young'’s Modules 30000. psi
p = Pressure -0.90078 psi

The static Fortran program was run with these values and the
results were converted into graphs of the same form as the graphs
presented by Stoker. Figure E-1 shows the graphical results from
the static Fortran program run. Figure E-1 combines the three plots
presented by Stoker. The plots in Figure E-1 are identical to the
plots presented by Stoker.

51

0.5

COMPARISON OF FIGURES 2.a,b, & c FROM STOKER TEXT

045

iy T

04
0.35
0.3
0.25

0.2

SIG THETA overk*R

0.15

0.1

0.05

T

Figure E-1.

o = FIGURE 2.2 Y AX]S = [NORMAL DEFLECTIONJ/[KR]
* = FIGURE 2.b Y AXIS = [HOOP STRESSJ[KR]
x = FIGURE 2.c Y AXIS = [MERIDIONAL STRESS}/[KR]

-r

002 004 006 008 01 012 014 016
THETA IN RADIANS

Comparison of Figures 2a,b, and c

52

0.18 02

from Stoker

Text

Appendix F. Static Comparison with NISA Finite Element Model

The finite element code NISA (see reference 4) was used to model
the spherical membrane with "pinned bottom" - "pinned top" boundary
conditions. The NISA library of elements does not include an
element to model "membranes". The 1library does include shell
elements. The shell elements include bending and are therefore
stiffer than the membrane model. Also, the runs made with NISA are
linear and the comparison highlights the nonlinear contribution to
the solution of the spherical membrane equations at moderate loads.
Axisymmetric NISA elements (NKTP=36) were attempted for the problem
but were unable to converge to a smooth boundary region near the
pinned ends. The "smoothest"” results were obtained by modelling the
sphere with "general 3-D shell elements” (NKTP-ZO) The best of
these elements for the model was found to be the six node elements
(NORDR=9). The NISA model was run with different constant pressure
distributions. The radius, thickness, Poisson’s ratio, and Young'’s
modules are the same as those shown in Table E-1. The value of
theta maximum is 90 degrees and the value of theta minimum is 20
degrees. The model con91st1ng of general 3-D shell elements takes
the symmetry of the problem into consideration by modelling only
one quarter of the sphere. One typ1ca1 finite element grid using
150 elements and 341 node points is shown in Figure F-1.

This grid was used to solve the static program with a constant
pressure distribution of -0.001 psi for all values of theta. The
NISA-predicted displacements were converted into nondimensional
tangential and normal dlsplacements. The results of the NISA run
are compared with the results using the static Fortran program in
Figures F-2 and F-3. The results are quite close. However, the NISA
results appear to have trouble converging smoothly near the
boundary points.

A second run was made using a similar grid to that shown in Figure
F-1 but with more elements. The grid used 2189 node p01nts and 660
elements. The comparison run was made using the same input as the
previous run except the pressure distribution was increased by a
factor of one hundred to -0.1 psi for all theta. A comparison of
the resulting deflections is shown in Figures F-4 and F-5. The
linear NISA results are obvious by comparison to the previous
example with 1/100th of the load. The NISA run deflections
increased proportionally to the applied load. The nonlinear effect
of the spherical membrane equations is also evident. The membrane
deflections do not increase linearly with the applied load. The
membrane solutions also appear to be less stiff then the NISA
solutions, which could be due to the bending contributions included
in the NISA elements. The tangential deflection versus theta curves
illustrate this difference.

53

AXIS OF SYMMETRY
|
9——@
1
1
20
3 ‘ 1 ’ 2
“— @
ELEMENI}ANC&H’ MODE;%#?BERWKB
ELEMENT NUMBERING ELEMENT # ONE

Figure F-1. Element & Node Point Layout for NISA Model

TANGENTIAL DEFORMATION

Figure

x10-5 COMPARISON OF TANGENTIAL DEFORMATION VS THETA

—_

o = RESULTS FROM 150 ELEMENT NISA RUN
* = RESULTS FROM 20 NODE STATIC FORTRAN PROGRAM

b,

20 30 40 50 60 70 80 90
THETA IN DEGREES

F-2. Comparison of U deflection Versus Theta (150)

54

x10+4 COMPARISON OF NORMAL DEFORMATION VS THETA

0 ' —_ . ; . i

-1 o = RESULTS FROM 150 ELEMENT NISA RUN
* RESULTS FROM 20 NODE STATIC FORTRAN PROGRAM|

NORMAL DEFORMATION

.8 C - s n
20 30 40 50 60 70 80 90
THETA IN DEGREES

Figure F-3. Comparison of W Deflection Versus Theta (150)

x103 COMPARISON OF TANGENTIAL DEFORMATION VS THETA

T

-t T

-1

2

3

TANGENTIAL DEFORMATION

o = RESULTS FROM 660 ELEMENT NISARUN

6 *=RESULTS FROM 20 NODE STATIC FOR b
20 30 40 50 60 70 80 90

THETA IN DEGREES

Figure F-4. Comparison of U deflection Versus Theta (660)

55

0 COMPARISON OF NORMAL DEFORMATION VS THETA

001t

o = RESULTS FROM 660 ELEMENT NISA RUN

* = RESULTS FROM 20 NODE STATIC FORTRAN PROGRAM
-0.02

0.03

-0.04

-0.05

NORMAL DEFORMATION

-0.06

-0.07

20 30 40 50 60 76 80 90
THETA IN DEGREES

Figure F-5. Comparison of W Deflection Versus Theta (660)

56

Appendix G. Vent and Annular Canopy Boundary Conditions

This Appendix describes the approximations used to model a vent and
or an annular canopy. The method is specific to the spherical
membrane equations and an example of the approximation will be
given. The allowable boundary conditions at each end from the
derivation by Stoker reduce to specifying a condition on both the
normal and tangential deflections at each end node point. The first
condition that must be satisfied for a vent or annular canopy is
that the value of the meridional stress must be zero at the peak
node point. Physically this says that there is no meridional load
applied at that node point. Mathematically this condition is stated
in equation (G-1).

el (ac omﬁ%-w'r% (%’w)zw (ucotB-w) =0 (G-1)

The second boundary condition at theta minimum is difficult to
determine. A variety of conditions were attempted. The best result
(based solely on the fact that the solutions yielded the most
continuous curves) was to extrapolate the value of the normal
deflection of the node point at theta minimum. This was
accomplished by fitting a second order polynomial to the normal
displacements of node points two, three, and four. The resulting
equation in terms of theta was used to extrapolate the value of the
normal deflection at node point number one. The actual physical
interpretation of this condition was not determined.

A static example using this boundary condition with nine stepped up
pressures is presented next. The example uses the infinite mass
boundary conditions at theta maximum defined as 120 degrees. The
value of theta minimum is 20 degrees. The input parameters are the
same as the parameters listed in Table E-1. Also, clustering at
both ends was used with beta equal to 1.1. The pressure is constant
for all theta and steps to a final value of -0.3 psi. The deformed
shapes are shown in Figure G-1. The tangential and normal
deflections versus theta are shown in fiqures G-2 and G-3,
respectively.

57

Y AXIS

STATIC MEMBRANE SHAPE AT DIFFERENT STEPPED PRESSURES

[. — . —— .
ost .
of]
0.5 1
-1F S 3

N

§

% N
15+ %, N 1
o = UNDEFORMED SPHERICAL SHAPE

2 15 a1 905 0 05 1 15 2

X AXIS

Figure G-1. Static Deformed Shapes at Stepped up Pressures

U DEFORMATION

TANGENTIAL DEFORMATION VERSUS THETA

0.14]
0.2 !

0.1}]
0.08 -1
0.06F |
0.04}]
omp X

20 30 40 50 60 70 80 90 100 110 120
THETA IN DEGREES

Figure G-2. Tangential Deflections Versus Theta

58

W DEFORMATION

NORMAL DEFORMATION VERSUS THETA

T ™ L

0 T —r

0.05

20 30 40 50 60 70 80 90 100 110 120
THETA IN DEGREES

Figure G-3. Normal Deflections Versus Theta

59

NQaNo0OO0GOOO0O0

Q

acaoaqQqaqaaonaoaaaaaaaaaaaoaaaaaaaa

Appendix H, Static Fortran Proqrams

L A2 AA 222 222222222222 2222222222 2222222 32X 2T

STATIC PROGRAM AND ATTACHED SUBROUTINES
IR I Iy Y I Y R T T T T T L I

#kxstx NON DIMENSIONALIZED VERSION hoddodod A Ad
FORTRAN PROGRAM to solve static version of nonlinear
membrane equations see "Nonlinear
Elasticity” written by J.J. Stoker 1968 page 32.

THE PROGRAM generates three MATLAB readable
matrices which can be loaded into MATLAB.

The MATLAB program STATIC.m generates graphical
results of the run.

parameter (nth=20)
parameter (nnn=nth+nth)
parameter (lwa=(6*nnn*+*2+13*nnn)/2)

implicit double precision(a-h,o0-2)

double precision fvec(nth+nth),y(nth+nth),wa(lwa),tol
real*8 el,epi(nth)

real*8 eth(nth),h,hh(nth),nu,p(nth),parnd(nth),pi
real*8 pres(nth),presinc,r

real+*8 pinc,pfact,pnow(nth)

real+*8 spi(nth),spimax,sth(nth),sthmax

real*8 x(nth),xmax,xx,zz

integer i,ibc,info,iopt,n,nprint

common/prop/ nu,parnd,x, hh,pi,xmax,xmin

external ndfcn,ndfenpt,ndfcnim

external ndr:ress

open(12,file=’ndstatic.m’)

++*LIST OF FILES/PROGRAMS CALLED OR OPENED#*#**ttatttatnt

open ndstatic.m

call ndfen.f

call ndfcnpt.f

call ndfcnim.f

call ndstress.f

open NDSTART

open NDCONTINUE

L2 23222222 222222 k3] DEFINITIONS (22 2222222222222 222]

aparab=constant used to generate a parabolic
pressure distribution ipress=2

beta =parameter used t- generate a clustered grid
pos. beta>1.0

binter=intercept value used to define linear pressure
distribution ipress=1

bparab=constant used to generate a parabolic pressure
distribution ipress=2

cc =used as variable in grid generation

cparab=constant used to generate a parabolic pressure
distribution ipress=2

dd =uged as variable in grid generation

el =Youngs Modulus divided by
(one minus Poisson’s ratio squared)

em =Youngs Modulus

epi(i)=strain "epsilon phi”" at node "i*

60

aaaaaqaaaaaaaQaaQaaaaoQaQaOaQOQaN0000000000O00CO0O00QCO00C0O0000

eth(i)=strain "epsilon theta” at node "i"

epimax=max. value of epi for run

epimin=min. value of epi for run

ethmax=max. value of eth for run

ethnin=min. value of eth for run

gamma =used in grid generation for iopt=4

h =membrane thickness (conatant)

hh(i) =the difference in radians from theta at
node "i" to theta at node "i-1"

i,j.k=integer counter for various loops

ibc =parameter which defines which B.C. to use

iopt =variable grid options four types

ipress=pressure vs. theta options three types

jkl =integer = 1/2 of nth (used in grid
generation for iopt=4)

NDSTART=file created by ndstatic.f contains two
columns by nth rows (init. def. used by dampall.f)

nth =total number of nodes on the membrane

nu =Poissons ratio

parnd(i)=non-dimensional pressure=p(i)*r/(el*h)

pi =double precision value for pi=3.14.....

p(i) =pressure at node point i, a function of theta

pslope=slope of press. vs. theta for linear
pressure distribution ipress=1

pYl,pxl etc. =used to generate parabola

equation when ipress=2

r =sundeformed radius of sphere in inches
sdefxmin=next four min and max values of deformed sphere
sdefymin=

sdefxmax=

sdefymax=

sth(i)=sigma theta at node i
spi(i)=sigma phi at node i
spimax=max. value of spi for run
spimin=min, value of spi for run
sthmax=max. value of sth for run
sthmin=min. value of sth for run
sumin=min. value of u-deflections for the entire run
sumax=max, " " .
swmin=min. " * wedef. "
swmax=max. "
wmax =
x(i) =value of theta at node "i" (theta=0.0 at top
of sphere) max value is xmax
xmax =maximum value of theta in ***tdegreeg***+
xmin =value of theta at top of sphere annular
case in degrees
y(i) =u-def. for 1 to nth,w-def. for nth+l
zbot =uged in parabolic pressure distribution ipress=2
ztop =used in parabolic pressure distribution ipress=2
zz =uged as variable in grid generation
(4222222 2] MATERIALS AND DIMENSIONS (22223 2222222222 d 222]
write(*,*)’ENTER value of ibc’
write(*,*)’ l=gymmetry-top pinned-bottom’
write(*,*)’ 2=pinned-top pinned-bottom’
write(*,*)’ 3=infinite mass B.C.’
read(*,*)ibc
write(*,*)

write(v,*)’ENTER THE PARAMETERS WHEN ASKED "0" =DEFAULT’

write(*,*)
write(*,*)’ENTER THE RADIUS IN INCEES (300)’

61

read(*,*)r
if(r.eq.0.0)r=300.0
write(*,*)’ENTER POISSON RATIO (0.3)’
read(*,*)nu
if(nu.eq.0.0)nu=0.3
write(*,*)’ENTER YOUNGS MODULUS (30000.0)’
read(*, *)em
if(em.eq.0.0)em=30000.0
el=em/(1l.-nu**2,)
if(ibc.ne.l.and.ibc.ne.3)then
write(*,*)’ENTER XMIN THETAMIN AT TOP OF SPHERE (DEG) (0)‘
read(*,*)xmin
elge
endif
write(*,*)’ENTER XMAX THETAMAX AT EDGE OF SPHERE (DEG) (90)°
read(*, *)xmax
if (xmax.eq.0.0)xmax=90.0
write(*,*)’ENTER THE MEMBRANE THICHNESS INCHES (0.005)°
read(*,*)h
if(h.eg.0.0)h=0.005
write(*,*)’ENTER THE VALUE OF TOL (1.0E-12)’
read(*,*)tol
if(tol.eqg.0.0)tol=1.0E-12
pi=4.*DATAN(1.D00)

*xsxxxrr qgrid generation gection srevrcavsre
write(*,*)’There are FOUR built in grid options’
write(*,*)’ENTER 1= uniform spacing’
write(*,*)’ENTER 2= clustering at peak node (node=1)’
write(*,*)’ENTER 3= clustering at edge node (node=nth)’
write(*,*)’ENTER 4= clustering at both ends’
read(*,*)ioptl
hh(1l)=(xmax-xmin)*(pi/180.)/(nth-1)

if(ioptl.eqg.1l)then
x(1)=xmin~(pi/180.)
do 7 i=2,nth,1
hh(i)=hh(1)
x(i)=x(i-1)+hh(i)
continue
hh(1)=hh(2)

else

endif

if(ioptl.eq.2)then
write(*,*)’ENTER BETA more clustering as beta gos to 1’
read(*, *)beta

zz=0.0

do 8 i=nth,1,-1
gamma=zz/ ((xmax-xmin)*(pi/180.))
dd=((beta+l.)/(beta-1l.))**gamma
ce=1,-betar(dd-1.)/(dd+1.)
x(i)=cct (xmax-xmin)*(pi/180.)
zz=2z+hh(1)
x(i)=xmin*(pi/180.)+x(i)
continue

else

endif

if(ioptl.eqg.3)then

write(*,*)’ENTER BETA more clustering as beta gos to 1’
read(*, *)beta

62

QaQ

119

678

z22=0.0

do 9 i=1,nth,1
gamma=zz/ ((xmax-xmin)*(pi/180.))
dd=((beta+l.)/(beta-1.))**gamma
cc=beta*(dd-1.)/(dd+1.)
x(i)=cct* (xmax-xmin)*(pi/180.)
zz=zz+hh(1l)
x(i)=xmin*(pi/180.)+x(1)
continue

else

endif

if(ioptl.eq.4)then

write(*,*)’ENTER BETA more clustering as beta gos to 1’
read(*,*)beta

write(*,*)’ENTER JKL =1/2 of nth nth=’,nth
read(*,*)jkl

hh(1)=(xmax-xmin)*(pi/180.)/(nth-1)

22=0.0

do 119 i=jkl+l,nth,l

gamma=zz/(0.5* (xmax-xmin)*(pi/180.)-hh(1)/2.)

dd=((beta+l.)/(beta-1.))**gamma

ccmbetat*(dd-1.)/(dd+l.)

x(i)=cc*(0.5*(xmax-xmin)*(pi/180.)-hh(1)/2.)

zz=zz+hh(1)

x(nth~i+1)=((xmax-xmin)/2.0+xmin)*(pi/180.)-hh(1)/2.-x(1)

x(i)=((xmax-xmin)/2.0+xmin)*(pi/180.)+hh(1)/2.4+x(1)
continue
else
endif

do 6 i=2,nth,1
hh(i)=x(i)-x(i-1)
continue
hh(1l)=hh(2)
PPP
PRESSURE SECTION
write(*,*)’ENTER the type of pressure distribution’
write(*,*)’ 1l=linear pressure along meridian’
write(*,*)’ 2=parabolic pressure along meridian’
read(*,*)ipress

if(ipress.eq.l)then

write(r,*)’Enter value of the pressure at theta=xmin’
read(*,*)pmin

write(*,*)’Enter value of the preasure at theta=xmax’
read(*,*)pmax

pslope=(pmax-pmin)/((xmax~-xmin)*(pi/180.))
binter=pmin-pslope*xmin*(pi/180.)

do 678 i=1,nth,1
p(i)=pslope*x(i)+binter
parnd(i)=p(i)*r/(el+h)

continue

else

endif

if(ipress.eq.2)then

write(*,*)’Enter value of the pressure at theta=xmin’
read(*,*)pmin

write(*,*)’Enter value of the pressure at theta=xmax’
read(*, *)pmax

write(s,*) 'Enter value of theta for the third point’

63

679

333

read(*,*)thetamid
write(*,*)’Enter value of the pressure at third point’
read(*,*)pmid
pyl=pmin
py2=pmid
py3=pmax
pxlsxmin*(pi/180.)
px2=thetamid+*(pi/180.)
px3=xmax*(pi/180.)
ztop=(pyl-py3)+*(px2-px3)-(py2-py3)*(px1l-px3)
zbot=(px1#**2, —px3*+2,)*(px2-px3)-
(pPX2**2.-px3*%2,)*(pxl-px3) -
aparab=ztop/zbot
bparab=(aparab*(px3*#2,-px2+*+2.)+py2-py3)/(px2-px3)
cparab=py3l-aparab*px3+*+2.-bparab*px3
do 679 i=1,nth,1l .
p(i)=aparab*x(i)*+*2.+bparab*x(i)+cparab
parnd(i)=p(i)*r/(el*h)
continue
else
endif
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPRPPPPPPPPPPPPPPPPPPPPPP
write matrix of undeformed geometry in MATLAB format
write(12,*)'gg=["’
do 333 i=1,nth,1l
write(12,*)x(1)
continue
write(12,*)’);’
I 2222222222222 22222222222 222222222222 22 23222222222 22227}
INPUT INITIAL GUESS
do 5 i=2,nth,1
y(i)=-0.00000001
y(i+nth)=-0.0000001
continue
y(1)=0.0
y(nth)=0.0
if(xmin.eq.0.0)then
y(l+nth)=-0.0000001
else
y(l+nth)=0.0
endif
Y(2*nth)=0.0
I E 2 X222 X2 22222222 2222222222222 22022223222 2k82482824222%4
sumin=1.0
sumax=0.0
swnin=1.0
swnax=0.0
sdefxmin=100.0
sdefymin=100.0 -
sdefxmax=-100.0
sdefymax=-100.0
sthmax=-100.0
spimax=-100.0 .
sthmin=100.0
spimin=100.0
ethmax=-100.0
epimax=-100.0
ethmin=100.0
epimin=100.0
pmin=100.0
pmax=-100,0
FHHHEHE 444 CALL SET UP ####80HEEEHH SIS

64

57

iopt=2
n=nth+nth
nprint=-1

write(*,*)’TWO OPTIONS HERBE:'

write(*,*)’l. Enter pressure step which is added’
write(*,*)’ to the prescribed pressure at every’
write(*,*)’ node after every loop’

write(*,*)’2. Enter 99 to increment pressure to final’
write(*,*)’ prescribed pressure distribution linearly’
read(*,*)presinc

write(*,*)’START RUN FROM LAST STOP?? YES=l1’

read(*,*)111

if(lll.eq.l)then

open(15,file='NDCONTINUE')

do 888 i=l,nth,1
read(15,*)y(i),y(i+nth)

continue

close(15)

else

endif

write(*,*)’SAVE THE END DATA FOR A NEW RUN?? YBS=]l'
read(*,*)kkl

if(kkl.eq.l)then

open(15,file='NDCONTINUB')
open(13,file='NDSTART’)

else

endif

write(*,*)’ENTER THE NUMBER OF CALLS INTEGER’
read(*,*)kkll

pinec=1./kkll

pfact=pinc

if (presinc.eq.99)then

do 57 i=1,nth,1
pnow(i)=parnd(i)
parnd(i)=pnow(i)+*pfact
pres(i)=parnd(i)
continue

elge

endif

llkksave=kkll
numbskkll

kdef=int (kkll/numb)
lcount=kdef
write(12,«) ' ff=["

do 25 j=1,kkll,1
umax=0.0
wnmax=0.0

ibc=1=gymmetry-top pinned-bottom
if(ibc.eqg.1l)then

call dnsge(ndfcn, jac,iopt,n,y,fvec,tol,nprint,info,wva,lwa)

else
endif

ibc=2=pinned-top pinned-bottom
if(ibc.eq.2)then

call dnsqge(ndfcnpt, jac,iopt,n,y,fvec,tol,nprint,info,wa,lwa)

65

[+

1119

1157

10
11
111

81

else
endif
ibc=3=sinfinite mass B.C.
if(ibc.eq.3)then
illl dnsqge(ndfcnim, jac,iopt,n,y, fvec,tol,nprint, info,vs,lwva)
else
endif

write(*,*)’info=’,info,’ loop # ’,9
SHAPES SHAPES SHAPES SHAPES SHAPES SHAPES SNAPES SEAPES
if((lcount.ge.kdef).or.j.eq.kkll)then

call ndstress(x,y,hh,nu,ibc,epi,eth,
+8pi,sth,ethmax,epimax,ethmin,epinin,
+sthmax,spimax,sthain,spimin)

do 1119 i=1,nth,l
sxdef=dsin(x(1i))+y(i)*dcos(x(i))~y(itnth)*dsin(x(1i))
sydef=dcos(x(1))-y(i)*dsin(x(i))-y(inth)*dcos(x(i})
write(12,1157)sxdef,sydef,y(i),y(i+nth),
+pres(i),epi(i),eth(i),spi(i),sth(i)
if (sydef.gt.sdefymax)sdefymax=sydef
if (sxdef.gt.sdefxmax)sdefxmax=sxdef
if(sydef.lt.sdefymin)sdefymin=sydef
if (sxdef.lt.sdefxmin)sdefxmin=sxdef
if(y(i).lt.sunin)sumin=y(i)
if(y(i).gt.sumax)sumax=y(i)
if(y(i+nth).1lt.swumin)swmin=y(i+nth)
if(y(i+nth).gt.swvmax)sumax=y(i+nth)
if(pres(i).lt.pmin)pmin=pres(i)
if(pres(i).gt.pmax)pmax=pres(i)
continue
llcountl=llcountl+l
lcount=}
else
lcount=lcount+l
endif
fomt(1!,’13.6, 28,.13.5,2!,013.5,28..13 .6,28,
+el3.6,2x,e13.6,2x,013.6,2x,013.6,2x,e13.6,2x)
SHAPRS SHAPES SHAPES SHAPES SHAPES SHAPES SEAPES SEAPE
write(*,4)
format (1x, ‘node#’ ,2x, ‘theta(deg)’,8x,‘'u(i)/r’,10x,
1 ‘w(i)/r’,3x,’p(i)*r/(el*h)’)
do 10 _=1,nth,1
xx=x(i)*(180./pi)
write(+,111)i,xx,y(i),y(i+nth),pres(i)
if(abs(y(i)).gt.umax)umax=abs{y(i)) -
if (abs(y(i+nth)).gt.wmax)wmax=abs(y(i+nth))
continue
format(1x,14,2x,£8.3,2x,el14.5,2x,614.5,2x,014.5,2x,014.5)
fomt(lx' i‘.‘x'f803'3".1‘15"".1‘a5"x('1‘ 05) M

if(j.ne.kkll)then
if (presinc.eq.99)then
pfactspfact+pinc
do 81 k=1,nth,1
parnd(k)=pnow(k)*pfact
pres (k)=parnd(k)
continue
else

aaQ

Qo

777
89

25

136

130
135

154
153

do 26 k=1,nth,1
p{(k)=p(k)+presinc
parnd(k)=p(k)*r/(el+*h)
pres(k)=parnd(k)
continue
endif
else
endif
if(j.eq.kkll.and.kkl.eq.1l)then
do 777 i=1,nth,1
write(15,*)y(i),y(i+nth)
write(13,89)y(i),y(i+nth)
continue
format(lx,el3.6,3x,e13.6)
else
endif
continue
write(12,*)’};’

next write final stress and strain to screen ####¥#
write(*,136)
format(1lx, 'NODE #’,4x, 'THETA’,4x, 'EPSILON THETA’,6x
1l ,’EPSILON PHI',6x,’SIGMA THETA’,9x,’'SIGMA PHI')
do 130 isl,nth,1l
xx=x(1)*(180./pi)
write(*,135)i,xx,eth(i),epi(i),sth(i),spi(i)
continue
format(1lx,i4,3x,£6.2,4x,e13.6,4x,213.6,4x,13.6,5x,013.6)
PSS 585555558555559595558955555589859899895998598ss8S
NEXT: write parameter matrix in MATLAB format
NOTE: Not all slots are usedi!
format(1lx,el2.5)
format(1x,19)
write(12,*)'hh=["’
write(12,153)nth
write(12,153)ibc
write(12,154)r
write(12,154)em
write(12,154)x(1)*(180./pi)
write(12,154)x(nth)*(180./pi)
write(12,154)beta
write(12,153)ioptl
write(12,154)0.
write(12,154)0.
write(12,154)0.
write(12,154)h
write(12,154)nu
write(12,153)1l1lcountl
write(12,154)sumin
write(12,154)sumax
write(12,154)swmin
write(12,154)swmax
write(12,154)pmin
write(12,154)pmax
write(12,154)ethmin
write(12,154)ethmax
write(12,154)epimin
write(12,154)epimax
write(12,154)sthmin
write(12,154)sthmax
write(12,154)spimin
write(12,154)spimax

67

onon

aaa

*%

*%

WVONANSEWN -

1
2

1
2

1

write(12,154)sdefimin
write(12,154)sdefxmax*].05
write(12,154)adefymin
write(12,154)sdefymax*1.05
write(12,153)0.
write(12,153)0.
write(12,154)¢
write(12,154)t
write(12,154)t
write(12,153)1l1lkksave
write(12,153)ipress
write(12,153)1lptopt
write(12,153)0.
write(12,*)’];’

stop

end

22T 2y L Y Y T I T e R A A
SUBROUTINE NDFCN.F

LA 2222224222222 22223222 T2 X XTSRS X T2 222X 2
subroutine ndfcn(n,y,fvec,iflag)

paramster (nth=20)

implicit double precision(a-h,0-2)

double precision y(nth+nth),fvec(nthénth)
real*8 a,b,c,co,d,nu,parnd(nth),pi

real*8 x(nth),hh(nth),xmax

integer i,n,iflag

common/prop/ nu,parnd,x,hh,pi,xmax,min

BOUNDARY CONDITIONS.

u(l)=y(1)=0.0,w(nth)=y(2*nth)=0.0,u(nth)=
y(nth)=0.0,slope of w(atl)=0.0
fvec(1)=y(1)

i=}

co=0,0

a=y(2)/hh(1)

b=0.0

c=0,.0
d=2.#(y(nth+2)-y(nth+1))/hh(1)+*#*2,
next with limits:L’Hopitals Rule
fvec(i+nth)=(a*d)-(y(i+nth)*d)+(a**2,)

—(a*y(i+nth))+(3.*d*ry(i)**2.)/(2.)
+(3.*ary(1)**2,)/(2.)+(a*d)-
y(i+nth)*d+a**2.-(y(i+nth)ra)+at+a
=2.*y(i+nth)+y(i)**2./(2.)+
nu*(-(y(i+nth)*d)-(y(i)**2.)
/(2.)=(y(i+nth)*a)+(ard)+(2.*
a**2.)+(a*d)-(y(i+nth)*d)-(y(i+nth)*a)
"'."’."’2 . *
y(i+nth))+parnd(i)

fvec(nth)=y(nth)
fvec({2*nth)=y(2+nth)
NEXT INTERIOR NODES
comdcos(x(1i))/dsin(x(i))
a=-y(i-1)*((bh(i+1)/hh(i))*(1./(hh(1i)+hh(i+l))))
+y(i)*(1./hh(i)~1./hh(i+1))+
y(i+1)*{(hh(i)/hh(i+1))*(1./(hh(i)+hh(i+l}))}))
b=y(i-1)*2.#(hh(i)*+*-1.)*(hh{i)+hh(i+l))**-1.~
2.*y(1)/(hh(i)*hh(i+1))+
y(i+l)*2.*(hh(i+l)**_1.)*((hh(i)+hh(i+l))*e-]1.)

cm=y(i-1+nth)*((hh(i+1)/hh(1i))*(hh(i)+hh(i+1))erl.)

+y(i+nth)*(hh(i)*~-1.-

68

c

a0

10

2 hh(i+1)**-1.)+y(i+1+nth)*((hh(i)/hh(i+1))*(hh(i)
3 +hh(i+l))*+-1.)
d-y(i-1+nth)*2.'(hh(i)**-l.)*(hh(i)+hh(i+1))**-1.
1 <2.*y(i+nth)/(hh(i)*
2 hh(i+l))+y(i+l+nth)*2.«(hh(i+1)**-1.)*((hh(1)
3 +hh(i+l))**-1.)
next equation is 9a
fvec(i)=b-c+c*d+(y(i))*d
+(y(i+nth))*c+(y(i+nth)*y(i))-
(17(2.))*%c**3.~(3.%y(i)/(2.))*c**2, -
((3.*y(i)**2.)/(2.))*c-y(i)**3.
/(2.)+a*co-y(i)*co**2.+(co/(2.))*c**2.+((y(i)*
co))*c+((y(i)**2.)*co)/(2.)+nu*(~y(i)
-c-{2.*y(i)*co*c)
+(y(i+nth)*c)+(y(i)*y(i+nth))
7(co*c**2.)/(2.)—(3.'(y(i)**2.)*co)
(2.))
next equation is 9b
fvec(i+nth)=(co*a*c)~-(co*y(i+nth)*c)
+(co*c**3,)/(2.)+(3.*cory(i)
c%2,.)/(2.)+(3.*corcry(1)**2.)/(2.)+(y(i)*co*a)
~(co*y(i)*y(i+nth))+(cory(i)**3.)/(2.)
(2.)+(3.%drcr*2,)/(2.)+(2.*y({1)*d*c)+(3.rarc**
2.)/(2.)+(2.*y(i)*a*c)+(y(i)*b)~(y(i)*c)+(3.
dry(i)%2.)/(2.)+(3.*a*y(i)**2.)/(2.)+(a*d)-(
y(i+nth)*d)+a**2,-(y(i+nth)*a)+a+y(i)*co
=2.*y(i+nth)+(y(i)*c)+y(
i)**2,/(2.)+nu*((-y(i)*c)~(y(i+nth)*cor*c)-(y(i)**2.)
/(2.)-(y(i+nth)*y(i)*co)+(cora*rc)-(c**2.)/(2.)+(2.*
y(i)*co*a)+(y(i)*co*d)-(y(i+nth)+*d)-(y(i+nth)*a)
+a+y(i)*co-2.*
y(i+nth))+parnd(i)
continue
return
end
P Y R R AR XXX X222 222222222222 2222222222422 2]

SUBROUTINE NDFCNPT.F
I 2222222223222 2222 222222 X222 2222222 X2 X232 2222 22]2
subroutine ndfcnpt(n,y,fvec,iflagqg)
parameter (nth=20)
implicit double precision(a-h,o-z)
double precision y(nth+nth),fvec(nth+nth)
real*s8 a,b,c,co,d,nu,parnd(nth),pi
realt*8 x(nth),hh(nth),xmax
integer i, ,n,iflag
common/prop/ nu,parnd,x,hh,pi,xmax,xmin
B.C. for pinned both sides
fvec(l)=y(1)
fvec(l+nth)=y(l+nth)
fvec(nth)=y(nth)
fvec(2*nth)=y(2*nth)
NEXT INTERIOR NODES
do 10 i=2,nth-1,1
co=dcos(x(i))/dsin(x(i))
a=-y(i-1)*((hh(i+1)/hh(i))*(1./(hh(i)+hh(i+1))))
1 +y(i)*(1./hh(i)~1./hh(i+1))+
2 y(i+l)*((hh(i)/hh(i+1))*(1./(hh(i)+hh(i+1))))
b=y(i-1)*2.*(hh(i)**-1.)*(hh(i)+hh(i+1))**-1.-
1 2.*y(i)/(hh(i)*hh(i+1))+
2 y(i+l)*2.+¢(hh(i+1)**-1.)*((hh(i)+hh(i+1))**-1.)
c=~y(i-1+nth)*((hh(i+1)/hh(i))*(hh(i)+hh(i+1))**-1.)

VOOV WN -

N WYL WN -

69

1 <+y(i+nth)*(hh(i)**=l.-
2 hh(i+l)*v-1.)+y(i+1+nth)*((hh(i)/hh(i+1))*(hh(4)
3 +hh(di+l))*+-1.)
dey(i-1+nth)*2.#(hh(i)**-1.)*(hh(i)+hh(i+1))*e.1,
1 =2.ty(i+nth)/(hh(i)*
2 hh(i+l))+y(i+l+nth)*2.¢(hh(i+1l)**=1,.)e((RNh(])
3 +hh(i+l))rr-l,)
c next equation is 9a
fvec(i)=b-c+crd+(y(i))*d
+{y(i+nth))*c+(y(i+nth)*y(i))-
(1/(2.))'c**3.-(3.'y(i)/(2-))’c"z.-
((3.*y(1)**2.)/(2.))*c-y(1)**3,
/(2.)+arco-y({i)*co**2.+(co/(2.))*c**2,+((y(d)*
co))*c+((y(i)**2.)*co)/(2.)+nur(-y(1i)
-c=(2.*y(1)*co*c)
+(y(i+nth)*c)+(y(i)*y(i+nth))
‘/'(CO*C'*Z.)/(2; ,‘(30.(y(i).'2¢)'CO)
(2.))
c next equation is 9
fvec(i+nth)={co*arc)~(cory(i+nth)*c)
+(co*c**3,)/(2.)+(3.%cory(l)
o%2,.)/(2.)+({3.*cotcry(1)**2.)/(2.)+(y(i)*co*a)
—(cor*y(i)*y(i+nth))+{cory(i)**3.)/(2.)
+(b*c)-c¥*2./
(2.)+(3.%d*c**2.)/(2.)+(2.*y(i)*d*c)+(3.%arcr*
2.)/(2.)+(2.*y(i)*a*c)+(y(i)*b)~(y(i)*c)+(3.
sdey(i)**2.)/(2.)+(3.*avy(i)**2.)/(2.)+(a*d)~(
y(i+nth)~d)+a**2 - (y(i+nth)*a)+a+y(i)*co
=2.*ry(i+nth)+(y(i)*c)+y(
1)#*2./(2.)+nu*((-y(i)*c)-(y(i+nth)*corc)~(y(i)**2.)
/{2.)~{y(i+nth)ry(i)*co)+(coratc)~-(c**2.)/(2.)+(2.*
y(i)*co*a)+(y(i)*co*d)~(y(i+nth)*d)-(y(i+nth)*a)
+a+y(i)*co-2.*
y(i+nth))+parnd(i)
10 continue
return
end
C (222X 22222222222 222222222222 X2 222222 232 2222 20K d)

c SUBROUTINE NDFCNIM.F

C 222222222382 2222 2 2222222202 2R 22 22222 22 222822027
subroutine ndfcnim(n,y,fvec,iflag)

parameter (nth=20)

implicit double precision(a-h,o0-z)

double precision y(nth+nth),fvec(nthenth)

real+*8 a,b,c,co,d,nu,parnd(nth),pi

real+*8 x(nth),hh(nth),xmax

real*8 thetal,theta2,thetad,xnot,ynot
real+8 xnotml,ynotml, xnotm2,ynotm2, ybelow
real*8 radius,xnth,xnthml,xnthm2,ynth
real*8 ynthml,ynthm2,hi,hipl,slope
integer i,n,iflag

common/prop/ nu,parnd,x,hh,pi,xmax,xmin

BOUNDARY CONDITIONS

u(l)=y(1)=0.0,w(nth)=y(2*nth)=0.0,u(nth)=
y(nth)=0.0,slope of w(atl)=0.0
fvec(l)=y(1)

i=1

co=0.0

a=y(2)/hh(1)

b-°Q°

c=0.0
de2,*(y(nth+2)-y(nth+1))/hh(1)**2,

OCONANEWN -

BWNOHOONANE WN =

Qaa

70

next with limits:L’Hopitals Rule
fvec(i+nth)=(a*d)-(y(i+nth)*d)

1 +(corc**3.)/(2.)+(3.*co*y(i)

2 *o*%2,.)/(2.)+(3.*co*cry(i)**2.)/(2.)+(ar*2,)

3 <(ary(i+nth))+(co*y(i)**3.)/(2.)

4 +(b*c)-c**2,/

5 (2.)+(3.%*d*c**2,)/(2.)+(2.*y(i)*d*c)+(3.*avcr*

6 2.)/(2.)+(2.*y(i)*a*c)+(y(i)*b)-(y(i)*c)+(3.

7 *dry(i)**2.)/(2.)+(3.*ary(i)**2.)/(2.)+(a*d)-(

8 y(i+nth)*d)+a**2.-(y(i+nth)*a)+ata

9 =2.*y(i+nth)+(y(i)*c)+y(

1 i)*+*2./(2.)+nu*((-y(i)*c)-(y(i+nth)*d)-(y(i)**2.)

2 /(2.)-(y(i+nth)*a)+(a*d)-(c**2.)/(2.)+(2.*

3 a*+*2.)+(a*d)-(y(i+nth)*d)-(y(i+nth)*a)

4 +a+a-2.*

S y(i+nth))+parnd(i)
next B.C. at edge

if (xmax.le.90.0)write(*,*) 'xmax is to small for I.M. B.C.’
first establish constants

thetal=(xmax-90.0)*(pi/180.)
theta2=thetal-hh(nth)
theta3=theta2-hh(nth-1)
xnot=dcos(thetal)
ynot=dsin(thetal)
xnotml=dcos(theta2)
ynotml=dsin(theta2)
xnotm2=dcos(theta3)
ynotm2=dsin(theta3)
ybelow=-1./ynot
radius=(xnot/ynot)
xnth=(1l.-y(2.*nth))*xnot-y(nth)*ynot
ynth=(-1.+y(2.*nth))*ynot-y{nth)*xnot
xnthml=(1.-y(2.*nth-1))*xnotml-y(nth-1)*ynotml
ynthml=(-1.+y(2.*nth-1))*ynotml-y(nth-1)*xnotml
xnthm2=(1.-y(2.*nth-2))*xnotm2-y(nth-2) *ynotm2
ynthm2=(-1.+4y(2.*nth-2))*ynotm2-y(nth-2)*xnotm2
hi=xnthml-xnth
hipl=xnthm2-xnthml
slope=-ynth*((2*hi+hipl)/(hi*(hi+hipl)))+

1 ynthml* ((hi+hipl)/(hi*hipl))-

2 ynthm2+# (hi/(hipl*(hi+hipl)))

NEXT:Node nth must travel in a circle of radius=" radlus
fvec(nth)=xnth**2, +(ynth-ybelow)**2,-radius*+2.
NEXT:Slope at node nth based on three nodes must=slope of "line"
fvec(2.*nth)=((radius**2,-xnth**2,)*+*0,.5)/xnth-slope
NEXT INTERIOR NODES
do 10 i=2,nth-1,1
co=dcos(x(1i))/dsin(x(i))
a=-y(i-1)*((hh(i+1)/hh(i))*(1./(hh(i)+hh(i+1))))
1 +y(i)*(l./hh(i)-1./hh(i+1))+
2 y(i+l)*((hh(i)/hh(i+1))*(1./(hh(i)+hh(i+1))))
b=y(i-1)*2.%(hh(i)**-1.)*(hh(i)+hh(i+1))**-1.-
1 2.*y(i)/(hh(i)*hh(i+1))+
2 y(i+1l)*2.*(hh(i+1)**-1.)*((hh(i)+hh(i+1))**-1,)
c=-y(i-l+nth)*((hh(i+1)/hh(i))*(hh(i)+hh(i+1))**-1.)
1 +y(i+nth)*(hh(i)**-1.-
2 hh(i+l)**-1.)+y(i+1+nth)*((hh(i)/hh(i+1))*(hh(i)
3 +hh(i+l))**-1.)
d=y(i-14+nth)#2.+*(hh(i)#**-1.)*(hh(i)+hh(i+1))**-1.
1 <2.*y(i+nth)/(hh(i)*

71

2 hh(i+l))+y(i+l+nth)*2.*(hh(i+1)*+-1.)*((hh(i)
3 +hh(i+l))**-1.)
c next equation is 9a
fvec(i)=b-c+crtd+(y(i))*d
+(y(i+nth))*c+(y(i+nth)ry(i))-
(17(2.))%c**3.-(3.%y(1)/(2.))*c**2.~
((3.%y(1)**2.)/(2.))*c-y(i)**3.
/(2.)%avco-y(i)*co**2.+(co/(2.))*cr*2.+((y(1)*
co))*cH((y(i)**2.)*co)/(2.)+nu*(-y(1)
-c=(2.*y(i)*co*c)
+{y(i+nth)*c)+(y(i)*y(i+nth))
7(§o*c'*2.)l(2.)-(3.*(y(i)**2.)*co)
(2.))
c next equation is 9b
fvec(i+nth)=(co*a*c)-(co*y(i+nth)*c)
+(cor*c**3,)/(2.)+(3.*co*y(])
*cx®2,.)/(2.)+(3.*corcry(i)**2.)/(2.)+(y(1)*co*a)
=(cory(i)*y(i+nth))+(cor*y(i)**3.)/(2.)
+(b*c)-c**2./
(2.)+(3.%d*c**2.)/(2.)+(2.*y(i)*d*c)+(3.%a*c**
2.)/(2.)+(2.*y(i)*a*c)+(y(i)*b)-(y(1)*e)+(3.
*dry(i)**2.)/(2.)+(3.*a*y(Li)**2.)/(2.)+(a*d)-(
y(i+nth)*d)+ar*2.~(y(i+nth)*a)+a+y(i)*co
=2.%*y(i+nth)+(y(i)*c)+y(
1)**2,./(2.)+nu* ((-y(i)*c)~-(y(i+nth)*co*c)-(y(i)**2.)
/(2.)=(y(i+nth)*y(i)*co)+(corarc)~(c**2.}/(2.)+(2.*
y(i)*co*a)+(y(i)*cord)~(y(i+nth)*d)-(y¥(i+nth)*a)
+a+y(i)*co-2.*
y(i+nth))+parnd(i)
10 continue
return
end
[o] [X X223 222 2222222222222 2232222 X2 2122232 2222222 dX 2

C SUBROUTINE NDSTRESS.F
C I TZZIYZEIYIEIISI RS2 2222222222 R X2 AR 2 2 2 R 2 2 2 2 &2 2 Q2 g
subroutine ndstress(x,y,hh,nu,ibc,epi,eth,
1spi,sth,ethmax, epimax,ethmin,epimin,
2sthmax,spimax,sthmin,spimin)
parameter (nth=20)
implicit double precision (a-h,o-2)
real*8 a,c
real*8 epi(nth),eth(nth),spi(nth),sth(nth)
real*8 hh(nth),nu,x(nth)
real*8 gthmax,spimax,sthmin,spimin
real+*8 ethmax,epimax,ethmin,epimin
dimension y(nth+nth)
integer i,ibc
c first for node # 1
if(ibc.ne.l.and.ibc.ne.3)thean
a=-y(1)*((2*hh(2)+hh(3))/(hh(2)*(hh(2)+hh(3))))+
y(2)*((hh(2)+hh(3))/(hh(2)*hh(3)))-¥(3)
((hh(2))/(hh(3)(hh(2)+hh(3))))
c=-y(l4nth)*((2.*hh(2)+hh(3))/(hh(2)*(hh(2)+hh(3))))+
y(2+nth)+*((hh(2)+hh(3))/(hh(2)*hh(3)))-
y(3+nth)*(hh(2)/(hh(3)*(hh(2)+hh(3))))
eth(1)=(a-y(l+nth))+(0.5)*(c+y(1))**2.
epi(1l)=y(1l)*(dcos(x(1))/dsin(x(1)))~y(1l+nth)
sth(l)=eth(1l)+nurepi(1l)
spi(l)=epi(l)+nureth(1l)
elsge
a=y(2)/hh(1)
eth(1l)=a-y(1l+nth)+(0.5)*(y(l))**2.

VRNV WN -

NaWNHORILIATE WN -

N e

72

30

40

epi(l)=a-y(1l+nth)
sth(1l)=eth(1l)+nurepi(1l)
spi(l)=epi(1l)+nureth(1l)
endif
do 30 i=2,nth-1,1
a=-y(i-1)*((hh(i+1)/hh(i))*(1./(hh(i)+hh(i+l))))+
1 y(i)*(1./hh(i)-1./hh(i+l))+
2 y(i+l)*((hh(i)/hh(i+1))*(1./(hh(i)+hh(i+1))))
c==y(i-1+nth)*((hh(i+1)/hh(i))*(hh(i)+hh(i+1))**-1.)+
1 y(i+nth)*(hh(i)**-1.-hh(i+1)*#-1,)+
2 y(i+l+nth)*((hh(i)/hh(i+1))*(hh(i)+hh(i+1))**-1.)
eth(i)=a-y(i+nth)+(0.5)*(c+y(i))**2.
epi(i)=y(i)*(dcos(x(1i))/dsin(x(i)))-y(i+nth)
sth(i)=eth(i)+nurepi(i)
spi(i)=epi(i)+nureth(i)
continue
next for node # nth
a=y(nth-2)*(hh(nth)/(hh(nth-1)*(hh(nth)+hh(nth-1))))-
ly(nth-1)*((hh(nth)+hh(nth-1))/(hh(nth)*hh(nth-1)))+y(nth)
2*((2*hh(nth)+hh(nth-1))/(hh(nth)*(hh(nth-1)+hh(nth))))
c=y(2*nth-2)*(hh(nth)/(hh(nth-1)*(hh(nth)+hh{nth-1))))-
ly(2*nth-1)*((hh(nth)+hh(nth-1))/(hh(nth)*hh(nth-1)))+
2y(2#*nth)*((2*hh(nth)+hh(nth-1))/(hh(nth)* (hh(nth-1)
3+hh(nth))))
eth(nth)=a-y(2*nth)+(0.5)*(c+y(nth))**2.
epi(nth)=y(nth)*(dcos(x(nth))/dsin(x(nth)))-y(2*nth)
sth(nth)=eth(nth)+nu*epi(nth)
spi(nth)=epi(nth)+nu*eth(nth)
do 40 i=1,nth,l1
if(sth(i).gt.sthmax)sthmax=sth(i)
if(spi(i).gt.spimax)spimax=spi(i)
if(sth(i).lt.sthmin)athmin=sth(i)
if(spi(i).lt.spimin)spimin=spi(i)
if(eth(i).gt.ethmax)ethmax=eth(i)
if(epi(i).gt.epimax)epimax=epi(i)
if(eth(i).lt.ethmin)ethmin=eth(i)
if(epi(i).lt.epimin)epimin=epi(i)
continue
return
end

73

a0 000aQa0Q0Q0000Q0Q0Q000CQ0QQO0000

A dix I, D c_Fort Pro

A I R R R e R I A R R I P R R 2 Y L)
DYNAMIC PROGRAM AND ATTACHED SUBROUTINES

I AZ 222222222222 2222222222222 222222222 XX222X2

(1222322322222 2] NONDIMBNSIONAL VERSION (222222222222
FORTRAN PROGRAM to solve dynamic version of nonlinear
membrane eguations see "Nonlinear

Elasticity” written by J.J. Stoker 1968 page 32.

The equations are solved by calling the subroutine
DDEBDF (SLATEC LIBRARY) etc. which solve a system of
first order differential equations. The program
DDEBDF.F calls one of the following subroutines
depending on the prescribed boundary conditions
dampdf.f, dampdfl.f, dampdfpt.f, or dampdfim.f
(ibc=1,2,3 or 4).

These subroutines are (user supplied) and are

located in this directory. Theses subroutines

call the functions dampea.f,dampeb.f and dampfcn.f in
this directory. The program can handle a variable
grid and has 3 clustering options. Parameters are
input for each run. The number of nodes used to solve
the problem can be changed by changing the

parameter statement for (nth) in this program

and in dampdf.f , dampdfl.f ,dampdfpt.f,dampdfim.f,
dampfcn.f, and dampstress.f. Dampstress.f is used to
calculate stresses and strains at various times.

NOTE: The parameters are entered in dimensional form
but output and internal computatio’ s are done in
nondimensional form. Also, three pressure
distributions as a function of theta are included.
These are (1) linear (2) parabolic (3) user defined

at each node. The pressure can be changed as a function
of time three separate ways. (1) linearly from p=0.0

to pfinal (2) linearly from pstart to p=0.0

(3) same as one with a time option which sets

all p(i)=constant

OUTPUT: The program generates "THREE" matrices aa bb
and cc. aa and cc are saved in
the file AAMatrix.m. This file can be
loaded into the MATLAB software. The bb matrix
is saved in bb.mat and can be loaded in
MATLAB with the command "load bb"
The MATLAB program DYNAMIC.m is used to
view the results of a run.

parameter (nth=20)
parameter (lrw=250+10*4*nth+16.*nthe*nth)
parameter (liw=55+4.*nth)

implicit double precision (a-h,o0-2)

real*8 atol,beta,cc,cu,cw,dd

real*8 el,em,epi(nth),eth(nth),gamma

real+8 h,hh(nth),nu,parnd(nth),pi

real*s8 pf(nth),p(nth),r,rho,rtol, rwork(lrw)

real*s spi(nth),spimax,sth(nth),sthmax,tstep,tfinal
real*? sumax,swmax,xmax,xmin,x(nth),xx(3),xxl,zz

74

(2}

0000000000000OOOOOOOOOOQQOOO0000()000000000000000600

real*8 yl,y2,y3,y4,Y5,Y6,Y7,y8,xend

real*s tin,tout,toutin

dimension rpar(500),y(4*nth)

dimension yt(4*nth-4)

integer cont,i,ibec,idid,info(20),iopt,ipar(nth)
integer iwork(liw),j,k,negq

common/propl/ x,yl,y2,y3,y4,Y5,Y6,y7,y8,xend

external dampdf,dampdfl,dampdfpt
external dampfcn,dampdfim
LIST OF FILES/PROGRAMS CALLED OR OPENED #*##tdiaddd
external=dampdf.f (for ibc=1)
external=dampdfl.f (for ibc=2)
external=dampdfpt.f (for ibc=3)
external=dampdfim.f (for ibc=4)
called from above two programs
function=dampea.f
function=dampeb.f
external=dampfcn.f (for ibc=4)
opened=NDSTART
opened=AAMatrix.m
opened=bb.mat
called=ddebdf.f (eguation solver)
called=dampstress.f calculates stresses and strains
Y2222 2222X32222 2222222 2% 24 DBFINITIONS (X X222 X222]
aparab=constant used to generate a parabolic
pressure distribution ipress=2
atol ="absolute” error tolerance used in DDEBDF.F
beta =parameter used to generate a clustered grid
pos. beta>1.0
binter=intercept value used to define linear pressure
distribution ipress=1
bparab=constant used to generate a parabolic pressure
distribution ipress=2
cc =used as variable in grid generation
cont =used to control output to screen
cparab=constant used to generate a parabolic pressure
distribution ipress=2
cu =damping ratio in u-direction
cw =damping ratio in w-direction
dampdf=External subroutine
dampdf im=External subroutine
dampdfl=External subroutine
dampdfpt=External subroutine
dampea=External function
dampeb=External function
dampstress=External subroutine
dd =ugsed as variable in grid generation
deltat=tout-tin used to determine u and w vel at
node nth when using i.m. b.c.
el =Youngs Modulus divided by
(one minus Poisson’s ratio squared)
em =Youngs Modulus
epi(i)=strain "epsilon phi" at node "i”
eth(i)=strain "epsilon theta” at node "i”
epimax=max. value of epi for run
epimin=min. value of epi for run
ethmax=max. value of eth for run
ethmin=min. value of eth for run
gamma =used in grid generation for iopt=4
h smembrane thickness (constant)

75

oaaaQaaQaaa0aaaaQaaQaaaaac0aaaaagaQaaao0NORONNOONO0000000000C00GO000Q0000AO0G

hh(i) =the difference in radians from theta at
node "i” to theta at node "i-1"
i,j,k,m=integer counter for various loops
ibc =parameter which defines which B.C. to use
idid =integer value sent back by DDEBDF.F to
report status of run
info(i)=input parameters used in DDEBDF.F
iopt =variable grid options four types
ipress=pressure vs. theta options three types
iwork =integer work array used by DDEBDF.F
jkl1 =integer = 1/2 of nth (used in grid
generation for iopt=4)
kdef =value used to determine when to print
to b[] matrix
lcount=counter used with kdef to print output
to b[)matrix
liw =dimension of iwork used by DDEBDF.F
llcountl=number of sets of data saved in bb{] matrix
1llkk =user input for total # of calls to DDEBDF.F
llkksave=llkk sent to defsave.m
lpcount=counter used to determine when to print to
screen every lpcounter loops
lpvstime=parameter for pressure vs. time
(if=1 then pressure changes with time)
lptopt=three pressure vs time options
lrw =dimension of rwork array used by DDEBDF.F
NDSTART=files created by ndstatic.f contains two
columns by nth rows (init. def.)
neg =number of egquations to be solved by DDEBDF.F
nth =total number of nodes on the membrane
nu =Poissons ratio
numb =# of "sets” of output to be saved
parnd(i)=non-dimensional pressure=p(i)+*r/(elt*h)
pi =double precision value for pi=3.14.....
p(i) w=pressure, a function of theta and time pai
pf(i) =pressure final when lpvstime=l
pfin =final "constant vs theta" pressure
used when lptopt=3
pfthree=time for which p(i)=0.0 when lpopt=3
pft=time input used in lptopt options
pmax =used to define pressure lin. and para.
also used to save pmaximum
pmnin =used to define pressure lin. and para.
also used to save pminimum
ppa=parameter used to change pressure each time step
ppstep= parameter used to change pparam sach time step
pslope=glope of press. vs. theta for linear
pressure distribution ipress=1
pyl,pxl etc. =used to generate parabola
equation when ipress=2
r =undeformed radius of sphere in inches
rho =density of material (lbf*sec**2)/inv**4
rpar(i)=used to pass info to and from DDEBDr.r
rtol =tolerence parameter used by DDEBDF "relative error®
rwork(lrw)=work array used in DDEBDF.F
sdefxmin=next four min and max values of deformed sphere
sdefymin=
sdefxmax=
sdefymax=
sumin=min. value of u-deflections for the entire run
sumax=max. " " "
svainsmin, * * w-def. "

76

anooaaaan0a0aQaaoaaaQaaaaaQaaaaaQaaQaaacQaaaaacocaaQoaaoaoco0ao00000000

aQa

Swmax=max.
sth(i)=sigma theta at node i
spi(i)=sigma phi at node i
spimax=max. value of spi for run
spimin=min. value of spi for run
sthmax=max. value of sth for run
sthmin=min. value of sth for run
t =current time ND
test3 =used when lpvstime=l to determine if
a restart is needed info(1)=0
tester=used when lpvstime=1l to determine if
a restart is needed info(1l)=0
tfinal=time at which run stops if larger
than time from loop 100
tfinish=dimensional time used for aa[matrix
tin =time used to start call
tout =current attempted output time ND
toutin=time we want to reach during this
run through loop
toutsave=saves original value of tout for aa[)matrix
tstart=gaves starting time of run
tstep =value added to tout for each call to DDERKF
wmax =
x(i) =value of theta at node "i" (theta=0.0 at top
of sphere) max value is xmax
xmax =maximum value of theta in **+*rdegreesrr+«
xmin =value of theta at top of sphere annular
case in degrees
xoldu =value of u-def at node nth tstep before
present (used with i.m. b.c.)
xoldw =value of w-def at node nth tstep before
present (used with i.m. b.c.)
y(i) =u-def. for 1 to nth,u-vel. for nth+l
to 2+nth, etc.
yt(i) =used in i.m. b.c. u-def. for 1 to
nth-1,u-vel. for nth to 2*nth-1, etc.
zbot =used in parabolic pressure distribution ipress=2
ztop =used in parabolic pressure distribution ipress=2
zz =uged as variable in grid generation
L2232 X232 X222 2322222222222 2222222222222 22222222222 222)

whkkkhakts® NEXT: BOUNDARY CONDITIONS ftttdeansthhaddhdd
(2222222222 282ZX2 22222222242 222222222 22222 2222222 X2 2]
ibc used to call the correct subroutine for the required
boundary conditions
ibc=1 is for pinned boundary conditions at node
nth (calls dampdf.f)
ibc=2 is for linear case (calls dampdfl.f)
ibc=3 is for pinned b.c. at "top" and "bottom"
nodes (calls dampdfpt.f)
ibc=4 is for infinite mass b.c. (not annular) calls
dampdfim.f which calls dampfcn.f
ibe=5 is for FUTURE B.C.
write(*,*)’CHOOSE BOUNDARY CONDITION??’
write(*,*)’ENTER 1 = pinned boundary at node nth’
write(*,*)’ENTER 2 = linear case boundary conditions’
write(*,*)’ENTER 3 = pinned b.c. at top and bottom annular’
write(*,*)’ENTER 4 = infinite mass B.C.'
write(*,*)’ENTER 5 = FUTUREII!’
read(*,*)ibc
(2222 XZ2 222222 d 2222222222422 2222232222322 2X2XZ2 XX 223
theanknandwvesss MATERIALS AND DIMENSIONS ettt dewvtswhaw
#*%* NOTE: parameters are input in dimensional form *wwe«

717

[o] (2422222222222 222220222222 1322022232202 2322232322222 22220 22
write(*,*)’ENTER TERE PARAMETERS, "0" FOR (**) DEPAULT’
write(r*,*)
write(*,*)’ENTER THE RADIUS IN INCHES (300)°
read(t,*)r
if(r.eq.0.0)r=300.0
write(*,*)’BNTER NU (0.3)’
read(*,*)nu
if(nu.eq.0.0)nu=0.3
write(*,*)’ENTER YOUNGS MOD. psi (30000.0)°
read(*,*)em
if(em.eq.0.0)em=30000.0
el=em/(1l.-nur*2.)
if(ibc.eq.3)then

write(*,*) ’ENTER XMIN THETAMIN AT TOP OF SPHERE (DBG) (0)’
read(*,*)xmin

else

xmin=0.0

endif
write(*,*) ENTER XMAX THETAMAX AT EDGE OF SPHERE (DEG) (90)°
read(*, *)xmax

if (xmax.eq.0.0)xmax=90,0

write(*,*)’ENTER THE MEMBRANE THICKNESS INCHEBS (0.005)°
read(*,*)h

if(h.eq.0.0)h=0.005

write(*,*)’ENTER THE MASS DENSITY OF THE MEMBRANE (9.0B-06€)°
read(*,*)rho

write(*,*)'ENTER THE U-DAMPING RATIO *

read(*,*)cu

rpar{6)=cu

write(*,*)’ENTER THE W-DAMPING RATIO '

read(*,*)cw

rpar(7)=cw

pi=4.*DATAN(1.D00)

c I ZZZZ22222X2 2222222223322 223023222224 222¢2222 2222222222822 222 2]

c GRIDS...GRIDS...GRIDS...GRIDS...GRIDS...GRIDS...GRIDS...

write(*,12)

12 fomt(lx’ 2 XZ222222 22222223222 2X22 222221323121 32 22322223222 24)
write(*,*)’THERE ARE FOUR TYPES OF GRID SPACING OPTIONS:’
write(*,*)’ENTER 1= uniform spacing’
write(*,*)’ENTER 2= clustering at peak node (node=l)’
write(*,*)’ENTER 3= clustering at edge node (node=nth)’
write(*,*)’ENTER 4= clustering at both ends’
read(*,*)iopt
hh(1)=(xmax-xmin)*(pi/180.)/(nth-1)

if(iopt.eg.l)then
x(1)=xmin*(pi/180.)
hh(1l)=(xmax-xmin)*(pi/180.)/(nth-1)
do 5 i=2,nth,1

hh{i)=hh(1)

x(i)=x(i-1)+hh(i)

5 continue

else
endif

if(iopt.eq.2)then

write(*,*)’ENTER BETA more clustering as beta gos to 1’
read(*,*)beta

22=0.0

78

Qa

119

219

gamma=zz/ ((xmax-xmin)*(pi/180.))
dd=((beta+l.)/(beta-1.))**gamma
ccwl.~beta*(dd-1.)/(dd+1.)
x(i)=cc* (xmax-xmin)*(pi/180.)
zz=zz+hh(1l)
x(i)=min* (pi/180.)+x(i)
write(+,*)i,x(i)*(180./pi)
continue

else

endif

if (iopt.eqg.3)then
write(*,*)’ENTER BETA more clustering as beta gos to 1’
read(*, *)beta

2z=0.

do 9 i=1,nth,1
gamma=zz/ ((Xmax-xmin)*(pi/180.))
dd=((beta+1.)/(beta-1.))**gamma
cc=beta*(dd-1.)/(dd+1.)
x(i)=cc* (xmax-xmin)*(pi/180.)
z2z=2z+hh(1)
x(i)=xmin*(pi/180.)+x(1i)
write(*,*)i,x(i)*(180./pi)
continue

else

endif

if (iopt.eg.4)then
write(*,*)’ENTER BETA more clustering as beta gos to 1’
read(*,*)beta
write(*,*)’ENTER JKL =1/2 of nth nth=’,nth
read(*,*)jkl
hh(1)=(xmax-xmin)*(pi/180.)/(nth-1)
22=0,0
do 119 i=jkl+l,nth,1
gamma=zz/ (0.5* (xmax-xmin)*(pi/180.)-hh(1)/2.)
dd=((beta+l.)/(beta-1.))**gamma
cc=betat* (dd-1.)/(dd+1.)
x(1i)=cc*(0.5%(xmax-xmin)*(pi/180.)~hh(1)/2.)
zz=z2+hh(1)
x(nth-i+1)-((xmax—xmin)lz.0+xnin)*(pi/180.)-hh(l)lz.-x(i)
x(1i)=((xmax-xmin)/2.0+xmin)*(pi/180.)+hh(1)/2.+x(1i)
continue
do 219 i=1,nth,l1
write(*,*)i,x(i)*(180./pi)
continue
else
endif
next: establish grid spacing
do 6 i=2,nth,l1
hh(i)=x(i)-x(i-1)
continue
hh(1)=hh(2)
GRIDS...GRIDS...GRIDS...GRIDS...GRIDS...GRIDS...GRIDS
PVSTHETA.. .PVSTHETA. . .PVSTHETA. . .PVSTHETA. . .PVSTHETA
write(*,*)’*«+++ PRESSURE SECTION #we+e’
write(*,+*)’ENTER the type of pressure distribution’
write(*,*)’ 1=linear pressure distribution’
write(*,*)’ 2=parabolic pressure distribution’
write(*,*)’ 3=YOU DRFINE THE PRESSURE AT EACH NODR’
read(*,*)ipress

79

aaQ

if(ipress.eq.l)then

write(s,*) ’Enter the value of the pressure at theta=xmin’
read(*,*)pmin

write(*,*)’'Enter the value of the pressure at theta=xmax’
read(*, *)pmax

pslopes=(pmax-pmin)/((xmax-xmin)*(pi/180.))
binter=pmin-pslope*xmin* (pi/180.)

do 678 i=1,nth,1l
p(i)=pslope*x(i)+binter
parnd(i)=p(i)*xr/(el+*h)

678 continue
else .
endif

if(ipress.eqg.2)then

write(*,*)’Enter the value of the pressure at theta=xmin’ -
read(*,*)pmin

write(¥,*)’Enter the value of the pressure at theta=xmax’
read(*, *)pmax

write(¥,*)’Enter the value of theta for the third point’
read(*,*)thetamid

write(*,*)’Enter the value of the pressure at third point’
read(*, *)pmid

pyl=pmin

py2=pmid

py3=pmax

pxlwxnins(pi/180.)

px2=thetamid*(pi/180.)

px3=xmax+(pi/180.)
ztop=(pyl-py3)*(px2-px3)-(py2-py3)*(pxl-px3)
zbot=(px1*+2,-px3++2,) *(px2-px3)~-

1 (pX2¥**2,.-px3*+*2,) *(pxl-px3)

aparab=ztop/zbot

bparab=(aparab* (px3*+2.-px2+*+2.)+py2-py3)/(px2-px3)
cparab=py3-aparab+*px3*+2,-bparab*px3

do 679 i=]1,nth,1
p(i)=aparab*x(i)*+*2.+bparab*x(i)+cparab
parnd(i)=p(i)*r/(el+*h)

679 continue
else
endif

if(ipress.eq.3)then
write(+,*)’Enter the pressure at sach node when asked’
do 677 i=1,nth,1
write(*,*)’ENTER the pressure at node # ’,i
read(*,*)p(4)
parnd(i)=p(i)*r/(el+*h)
677 continue .
else
endif
PVSTHRTA. . .PVSTHETA. . .PVSTHETA. . .PVSTHETA. . . PVSTHETA
PVSTIME....PVSTIME....PVSTIME. .. .PVSTIME....PVSTIME .
write(*,12)
write(*,*)’DO YOU WANT THE PRESSURE TO CHAMGE WITH TIME22?’
write(*,*)’IF YES ENTER 1 IF MO ENTER ANY OTHER #'
read(*,*)lpvstime
if(lpvstime.eq.l)then
write(*,*)’THE FOLLOWING OPTIONS ARE AVAILABLE'
write(*,12)
write(*,*)’1=START with all p(i)=0.0 and linearly increase’
write(*,*)'the pressure values to p-final at user defined t’

80

——

write(*,*)

write(*,*)’2=START from p(i)=given above and decrease the’
write(*,*) 'pressure to p(i)=zero at user defined time’
write(*,v)

write(*,v)’3I=game as #1 but all p(i) go to p(i)=user defined’
write(*,*)’constant at a user defined time’

write(*,12)

write(*,*)’ENTER THE OPTION NUMBER'

read(*,*)1lptopt

if(lptopt.eqg.l)then
do 543 i=1,nth,1
pf(i)=parnd(i)
parnd(i)=0.0
543 continue
write(*,*)’ENTER THE TIME AT WHICE PFINAL IS TO BE REACHED’
read(*,*)pft
else
endif

if(lptopt.eq.2)then
do 544 i=1,nth,1
pf(i)=parnd(i)
544 continue
write(*,*) ’ENTER THE TIME AT WHICH P=0.0 IS TO BE REACHED’
read(*,*)pft
else
endif

if(lptopt.eqg.3)then
do 545 i=1,nth,1
pf(i)=parnd(i)
parnd(i)=0.0
545 continue
write(*,*)’ENTER THE TIME AT WHICH PFINAL IS TO BE REACHED’
read(*, *)pft
write(*,*)’ENTER THE TIME AT WHICH P IS TO JUMP TO pfin’
read(*,*)pfthree
write(*,*)’ENTER THE PRESSURE pfin for nodes after above time’
read(*,*)pfin
pfin=pfin*tr/(el*hj
else
endif
else
endif
c PVSTIME....PVSTIME....PVSTIME....PVSTIME....PVSTIME....
c $$$5$58S next some set up for call to DDEBDF.F $$$$$$8S$S
c $:$g$g$$
tstart=t
write(*,*)’ENTER THE VALUE OF TOUT (0.00002)’
read(*,*)tout
if(tout.eq.0.0)tout=0.00002
toutsave=tout
write(*,*)’ENTER THE VALUE OF TSTEP (0.00002)°
read(*,*)tstep
if(tstep.eq.0.0)tstep=0.00002
write(*,*)’ENTER THE VALUE OF TFINAL (0.1)’
read(*,*)tfinal
if(tfinal.eq.0.0)tfinal=0.1
info(1l)=0
info(2)=0

81

000

(s I ¢]

oaoaa

13

10

info(3)=0
write(*,*) 'ENTER THE VALUE OF RTOL (0.000000001)’
read(*,*)rtol
if(rtol.eq.0.0)rtol=0.000000001
write(*,*)’ENTER THE VALUE OF ATOL (0.000000001)’
read(*,*)atol
if(atol.eq.0.0)atol=0.000000001
rpar(2)=nu
ipar(1l)=nth
$ SIS0 80S55555855555559955555555998595999859559858898ss8s8
NEXT:MORE ON PRESSURE VS TIME
PVSTIME....PVSTIME....PVSTIME....PVSTIME....PVSTIME....
if(lpvstime.eq.1l)then
if(lptopt.eq.l.or.lptopt.eq.3)then
pfthree=pfthree*((rho*rrv+*2,.)/el)*+-0.5
ppstep=(tout/pft)
ppa=ppstep

if (ppstep.ge.1.0)then

write(*,*)’THE VALUE OF ppstep IS GREATER THAN ONE’

write(*,*)’ therefore pressures are pf(i) at t=0.0’

do 13 i=],nth,1

parnd(i)=pf(i)

continue

else

endif
endif

if(lptopt.eq.2)then
ppa=1.0-1.*(pft/tout)**-1.0
ppstep=-1.*(pft/tout)**-1.0
else
endif
else
endif
PVSTIMR....PVSTIME... .PVSTIME....PVSTIME... .PVSTIME....
NEXT: nondimensionalize the times
toutstout*((rho*r+*+*2,.)/el)**-0.5
tstep~tstep*((rho*r+v+2,.)/el)**-0.5
tfinal=tfinal*((rho*r**2.)/el)**-0.5
INIT.COND,..INIT.COND...INIT.COND,..INIT.COND...INIT.COND..
do 10 i=1,nth,1
y(i)=0.0
y(i+nth)=0.0
y(i+nth+*2)=0.0
y(i+nth#*3)=0.0
rpar(i+3*nth)=x(i)
rpar(i+2+nth)=hh(i)
rpar(i+nth)=parnd(i)
continue
next NDSTART is a data file generated
from the program “ndstatic.f”
you may start the run with this deflection
and zero initial velocity
write(s,*)’ INTER INITIAL QUESS FOR DEFLECTIOMNS’
write(*,*)’ENTER O=all nodes start from undeformed position’
write(*,+*)’ENTER l=start in deformed state defined in STARTND'
read(*,*)JJ
if(Jj.eq.1)then
open(13,file=’'NDSTART’)
do 149 i=]1,nth,1
read(l3,+*)y(1),y(i+2*nth)

82

write(*,*)y(i),y(i+2*nth)
149 continue
elgse
endif
INIT.COND...INIT.COND...INIT.COND...INIT.COND...INIT.COND..
INIT.COND.LINEAR...INIT.COND.LINEAR...INIT.COND.LINEAR
LLLLLL if ibc=2 prescribe values of w at time = 0.0 LLLLLLL
if(ibc.eq.2)then
write(*,*)’YOU HAVE CHOSEN IBC=2 LINEAR BC *
write(*,*)’YOU CAN PRESCRIBE THE LINEAR SOLUTION FOR W’
write(*,*)’START WITH LINEAR SOLUTION?? yes=99,no=any #'
read(*,*)j
if(j.eq.99)then
do 11 i=]1,nth,1
y(i+2*nth)=((1l.~-nu)*p(i)*r*+*2.)/(2.*em*h)
c next nondimensionalize
y(i+2*nth)=y(i+2*nth)*1./x
11 continue
write(*,+*)’the value of y(3+2*nth)=’,y(3+2*nth)
else
endif
else
endif
c INIT.COND.LINEAR...INIT.COND.LINEAR...INIT.COND.LINEAR
write(*,*)’ENTER # of time steps to save’
read(*, *)numb

Qaao

open(l14,file='bb.mat’)
open(15,file=*AAMatrix.m’)

sumin=1.0
sumax=0.0
swmin=1.0
swmax=0.,0
sdefxmin=100.0
sdefymin=100.0
sdefxmax=-100.0
sdefymax=-100.0
sthmax=-100.0
spimax=-100.0
sthmin=100.0
spimin=100.0
ethmax=-100.0
epimax=-100.0
ethmin=100.0
epimin=100.0
pmin=100.0
pmax=-100.0

call dampstress(x,y,hh,nu,ibc,epi,eth,
+spi,sth,ethmax, epimax,ethmin,epimin,
+sthmax, spimax,sthmin,spimin)

write(14,157)t,0.0,0.0,0.0,
+0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0

do 1118 i=]1,nth,1

write(14,157)dsin(x(i)),dcos(x(i)),y(1),y(i+2*nth),
+y(i+nth),y(i+3*nth),rpar(i+nth),epi(i),eth(i),
+8pi(i),sth(i),rwork(20+i+nth), rwork(20+i+3*nth)

llcountl=1
1118 continue
1157 format(1x,i4,2x,e13.5,2x,e13.5,2x,e13.5,2x,e13.5)

83

aaga

aaQa

157 format(lx,el3.5,2x,13.5,2x,013.5,2x,013.5,2x,013.5,
+2x,¢13.5,2x,13.5,2x,013.5,2x,13.5,2x,013.5,2x,¢13.5,
+2%x,¢13.5,2x,013.5)

$985555585588558555555555555555555555555589555585955885888
$$5888S$ CALL EQUATION SOLVER DDEBDF.F $S5$5535555558558$
5550505885 0555550558555995595555555555559859859555955s588
xoldu=y(nth)

xoldwsy(3*nth)
neg=4+*nth
write(*,*)’ENTER THE TOTAL # OF LOOPS FOR RUN
read(*,*)11lkk

llkksave=1llkk

kdef=int (1lkk/numb)

lcount=kdef

cont=0

lpcount=25

L2 2 2 1] m [¥ BIGIDOP (222 X22X 22223222 2X2 2222222222222 2]
do 100 j=1,11kk,1

NEXT: :RESTART NEEDED IF PRESSURE CHANGING WITH TIME

if(lpvstime.eqg.l.and.test3.eq.1.0)info(1)=0

111111111211111 PINNED BOTTOM BOUNDARY CONDITION 1111111
if(ibc.eq.1)then
tin=t
toutin=tout
call ddebdf (dampdf,neq,t,y,tout,info,rtol,atol, idid,
1 rwork, lrw, iwork, liw, rpar, ipar,djac)
next line continues integration past 500 if nessecary
if(idid.eq.~1)info(1)=1
else
endif
1111111111111111111311111111112111311111211111111111111111111
2222222222222 LINEAR SOLUTION "BOUNDARY CONDITION" 2222222
if(ibc.eg.2)then
tin=t
toutin=tout
call ddebdf(dampdfl,neq,t,y,tout,info,rtol,atol,idid,
1 rwork, lrw, iwork, liw, rpar, ipar,djac)
next line continues integration past 500 if nessecary
if(idid.eq.-1)info(1l)=1
elge
endif
222
333333 PINNED TOP AND BOTTOM BOUNDARY CONDITION 3333333333
if(ibc.eq.3)then
tin=t
toutin=tout
call ddebdf (dampdfpt,neq,t,y,tout,info,rtol,atol,idid,
1 rwork, lrw, iwork, liw, rpar,ipar,djac)
next line continues integration past 500 if nessecary
if(idid.eq.-1)info(1)=1
else
endif
333
444444 INFINITE MASS BOUNDARY CONDITION 44444444444444444

if(ibc.eq.4.and.ntestit.ne.l)then
xx(1)=y(nth)
xx{2)=y(3*nth)
rpar(4)=xx(1)
rpar(5)=xx(2)
ntestits=l

84

else
endif

if(ibc.eqg.4)then
neg=4*nth-4
do 1543 m=1,4*nth-1,1
1lj=m
if(m.ge.nth)li=m-1
if(m.ge.2*nth)lj=m-2
if(m.ge.3*nth)lj=m-3
if(m.eg.nth)goto 1543
if(m.eqg.2*nth)goto 1543
if(m.eq.3*nth)goto 1543
yt(1j)=y(m)
1543 continue
tin=t
toutin=tout
9441 call ddebdf(dampdfim,neq,t,yt,tout,info,rtol,atol,idid,
1 rwork,lrw,iwork,liw,rpar,ipar,djac)
c next line continues integration past 500 if nessecary
if(idid.eqg.-1)then
info(l)=1
jcount=jcount+1
if(jcount.eqg.2)goto 999
goto 9441
else
jcount=0.
xx(1)=rpar(4)
xx(2)=rpar(5)
do 1544 m=1,4*nth-1,1
lj=m
if(m.ge.nth)lj=m-1
if(m.ge.2*nth)lj=m-2
if(m.ge.3*nth)lj=m-3
if(m.eqg.nth)goto 1544
if(m.eg.2*nth)goto 1544
if(m.eq.3*nth)goto 1544
y(m)=yt(1j)
1544 continue
deltat=tout-tin
y(nth)=xx(1)
y(2*nth)=({xx(1)-x0ldu)/deltat
y(3*nth)=xx(2)
y(4*nth)=(xx(2)-x0ldw)/deltat
xoldu=xx(1)
xoldw=xx(2)
endif
elge
endif
4444444444444444484444440444404040444444449444944404449449404444449444
SHAPES SHAPES SHAPES SHAPES SHAPES SHAPES SHAPES SHAPES
SHAPES section saves values of u and w deflections
and deformed shapes of membrane at "numb”
intermediate time steps during the run
also saves current time and pressures,
u and w velocities and
stress and strains at all nodes
tfinish=t*((rho*r*+2,)/el)}**0.5
if((lcount.ge.kdef).or.j.eq.llkk)then
write(14,157)t,0.0,0.0,0.0,
+0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0

aaaqQaaaaqa

85

C
1119

20

call dampetress(x,y,hh,nu,ibc,epi,eth,

+8pi,sth,ethmax, epimax, ethmin,epimin,
+sthmax,spimax,sthmin,spimin)

do 1119 i=}1,nth,1l
sxdef=dsin(x(i))+y(i)*dcoa(x(i))-y(i+2*nth)*dsin(x(i))
sydef=dcos(x(i))-y(i)*dsin(x(1i))-y(i+2*nth)*dcos(x(i))
write(14,157)axdef,sydef,y(i),y(i+2*nth),

+y(i+nth),y(i+3*nth),rpar(i+nth),epi(i),eth{i),
+spi(i),sth(i),rwork(29+nth+i),rwork(20+3*nth+i)

if (eydef.gt.sdefymax)sdefymax=sydef

if (sitdef.gt.sdefxmax)sdefxmax=sxdef
if(sydef.lt.sdefymin)sdefymin=asydef
if(sxdef.lt.sdefxmin)sdefxmin=sxdef
if(y(i).lt.sumin)sumin=y(i)
if(y(i).gt.sumax)sumax=y(i)
if(y(i+2*nth).lt.swmin)swmin=y{i+2*nth)
if(y(i+2*nth).gt.swmax)swmax=y(i+2#*nth)
if(rpar(i+nth).lt.pmin)pmin=rpar(i+nth)
if(rpar(i+nth).gt.pmax)pmax=rpar(i+nth)

continue
llcountl=llcountl+l
lcount=1
else
lcount=lcount+1l
endif
SHAPES SHAPES SHAPES SHAPES SHAPES SHAPES SHAPES SHAPES
if(lpcount.ge.25)then
write(*,*)"LOOP# = ',j,’ CURRENT TIME= ’,t,’ IDID=’,idid
lpcount=0
else
lpcount=1pcount+1l
endif
if(cont.eq.0)then
write(*,15)
do 20 i=]1,nth,l
xz=x(i)*(180./pi)
write(*,25)i,x2,y(i),y(i+2*nth),y(i+nth),
y(i+3*nth),rpar(i+nth)
continue
write(*,*)
write(*,*)’'TOUT=’,tout,’ CURRENT TIME=’,t
write(*,*) 'CONTINUE IN TIME?? O=yes l=stop other noprint’
read(*,*)cont
elge
endif
if(cont.eq.l)goto 999
if(t.ge.tfinal)goto 999

tout=tout+tstep
PPP
NEXT :PRESSURE CHANGE WITH TIME
if(lpvstime.eq.1l)then
if(lptopt.eq.1l)then
if(ppa.gt.1.0)then
ppa=1.0
lpvstime=0.0
else
endif
test3=1.0
do 31 k=1,nth,1
parnd(k)=ppa*pf (k)

86

rpar(k+nth)=parnd(k)
31 continue
ppa=ppa+ppstep
else
endif

if(lptopt.eq.2)then
if(ppa.l1t.0.0)then
ppa=0.0
lpvstime=0.0

. else

endif
test3=1.0

do 131 k=1,nth,1
parnd(k)=ppa*pf (k)
rpar(k+nth)=parnd(k)

131 continue

ppa=ppa+ppstep

else

endif

if(lptopt.eq.3)then
if(tester.eq.0.0)then
if(ppa.ge.1.0)then
ppa=1.0
test3=0.0
do 341 k=1,nth,l
parnd(k)=ppa*pf (k)
rpar(k+nth)=parnd(k)
341 continue
tester=99.0
else
do 331 k=1,nth,1
parnd(k)=ppa*pf (k)
rpar (k+nth)=parnd(k)
331 continue
test3=1.0
ppa=ppa+ppstep
endif
else
endif
if(t.ge.pfthree)then
do 136 k=1,nth,1
parnd(k)=pfin
rpar(k+nth)=pfin
136 continue
test3=test3i+1.0
- c lpvstime=0.0
else
endif
else
‘ endif
else
endif
c PPPPPPPPPPPPPFPP
100 continue
c BIGLOOP...BIGLOOP...BIGLOOP...BIGLOOP...BIGLOOP...
15 format(1x, 'node #’,8x, 'THETA',5x,'U(def)/xr’,
1 8x,’ W(def)/r’,8x,'ndvel(U)’,8x, 'ndvel(W)’,
2 8x, ‘ndpress’)
25 format(1x,i4,3x,£6.2,3x,e13.6,3x,e13.6,3x,e13.6,
+3x,e13.6,3x,213.6)

87

c SELLLLLLLLLLLLLLLLLLLLLALLAALACALAALALLLLLLLLLLLLLLLLLRLY
c $555858$5555598S STRESS AND STRAIN CALCULATIONS $$$$$$$
999 write(*,36)

36 format(lx,'NODE #’,4x, THETA',4x, EPSILON THETA’,6x
1 ,’BPSILON PHI’,6x,’SIGMA THETA’,9x,’SIGMA PHI’)

NEXT write final values in matrix for plotting

aaa

call dampstress(x,y,hh,nu,ibc,epi,eth,
+spi,sth,ethmax,epimax,ethmin,epimin,
+sthmax, spimax,sthmin,spimin)
write(15,*)‘ce=[’
do 40 i=1,nth,1
xx1=x(i)*(180./pi)
write(*,35)i,xxl,eth(i),epi(i),sth(i),spi(i)
write(15,37)xx1,eth(i),epi(i),sth(i),spi(i)
40 continue
35 format(1x,i4,3x,£f6.2,4x,213.6,4x,213.6,4x,213.6,5x,e13.6)
37 format(1x,el2.6,3x,e12.6,3x,212.6,3x,812.6,3x,212.6)
write(15,*)’];:’
c PSS S0050000 0000009598995 89559999999sss8sss88s88
c NEXT: write parameter matrix
154 format(lx,el2.5)
153 format(1x,19)
write(15,*) aa=[’
write(15,153)nth
write(15,153)ibc
write(15,154)r
write(15,154)em
write(15,154)x(1)*(180./pi)
write(15,154)x(nth)*(180./pi)
write(15,154)beta
write(15,153)iopt
write(15,154)cu
write(15,154)cw
write(15,154)rho
write(15,154)h
write(15,154)nu
write(15,153)1llcountl
write(15,154)sumin
write{15,154)sumax
write(15,154)swmin
write(15,154)swmax
write(15,154)pmin
write(15,154)pmax
write(15,154)ethmin
write(15,154)ethmax
write(15,154)epimin
write(15,154)epimax
write(15,154)sthmin
write(15,154)sthmax
write(15,154)s8pimin
write(15,154)spimax
write(15,154)sdefxmin
write(15,154)sdefxmax*1.05
write(15,154)sdefymin
write(15,154)sdefymax+*1.05
write(15,153)0.0
write(15,153)0.0
write(15,154)toutsave
write(15,154)tstart
write(15,154)tfinish

¢}

(e NeXe]

Qaaaa

aaQ

Qa

aQ

aaa

write(15,153)1llkksave
write(15,153)ipress
write(15,153)1lptopt
write(15,153)0.0
write(15,*)"]1;’
stop
end
I ZXXT 22X X222 222222222222 22222222222 222222222 X2

SUBROUTINE DAMPDF.f
[Z XXX XXZZI 222222222222 222 2222222222222 22222232 X2FX 2]
subroutine dampdf(t,y,yp.rpar,ipar)
parameter (nth=20)
implicit double precision (a-h,o-z)
real*8 a,b,c,co,d,nu,parnd(nth)
real*8 x(nth),hh(nth),pp,uu,ww
real*8 cu,cw,uvel,wvel
dimension y(4*nth),yp(4*nth),rpar(500)
integer i,ipar(nth)
yp(l=--nth)=u-velocity
yp(nth+l--2*nth)=u-acc.
yp(2*nth+l--3*nth)=w-velocity
yp(3*nth+l--4*nth)=w-acc.
nu=rpar(2)
cu=rpar(6)
cw=rpar(7)
first set parameters (same as dampall.f) and velocities
do 5 j=1,nth,1
x(3j)=rpar(j+3*nth)
hh(j)=rpar(j+2*nth)
parnd(j)=rpar(j+nth)
yp(j)=y(j+nth)
yp(j+2*nth)=y(j+3*nth)
continue
PEAK NODE BOUNDARY CONDITIONS ###F##FHH#FA#1FL1EFH
a=y(2)/hh(1)
b=0.0
c=0.0
next forward difference for d=d"2w/dtheta”2
note:equal spacing here hh(1)=hh(2)
d=(2.*(y(2+2*nth)-y(1+2*nth)))/hh(1)**2.
next velocity and acc. in u-dir (yp(1)=u-vel.,
yp(l1+nth)=u-acc. at theta=0.0)
yp(1)=0.0
yp(1+nth)=0.0
co=0,0
pp=parnd(1)
def. in u-dir at node 1 = 0.0
uu=0.0
ww=y(1+2*nth)
wvel=y(1+3#*nth)
next velocity and accelleration in w-dir
yp(l+2*nth)=y(1+3*nth)
next: equation from applying L’Hopitals Rule
to "dampeb.f" equation
yp(l+3*nth)=(a*d)-~(ww*d)+(a**2.)-(ar*rww)+(a*d)-(
1 wwrd)+a**2 .- (wwra)t+ata~2. *wwinur (- (wwed)
2 —(wwra)+(ard)+(2.%ar*2,.)+ (ar*d)-(wwrd)-
3 (ww*a)+a+a-2.*ww)+pp-cwrwvel
######### next pinned edge conditions at maxtheta ######ELS
next velocity and acceleration at node # nth =
zero in u-dir and w-dir
yp(nth)=0.0

89

yp(2*nth)=0.0
yp({3*nth)=0.0
yp(4*nth)=0.0
c $$$$98$358S$ NEXT CALCULATE YP FOR INTERIOR NODES $$$$$$$
do 10 i=2,nth-1,1
comdcos(x(1))/dsin(x(i))
c a,b,c,d are central difference formulas for
c du/dtheta,d*+*2u/dthetar**2, etc
a=-y(i-1)*((hh(i+1)/hh(i))*(1./(hh(i)+hh(i+1))))+
1 y(i)*(1l./hbh(i)~-1./hh(i+1))+
2 y(i+l)*((hh(i)/hh(i+1))*(1./(hh(i)+hh(i+1))))
bey(i-1)*2.#(hh(i)**-1.)*(hh(i)+hh(i+l))**-1.~
1 2.*y(i)/(hh(i)*hh(i+l))+
2 y(i+l)*2.%*(hh(i+1l)**-1.)*((hh(i)+hh(i+1))**-1.)
cm.y(i-1+2*nth)*((hh(i+1)/hh(i))*(hh(i)+hh(i+1))**-1.)+
1 y(i+2#*nth)*(hh(i)**-1.-hh(i+1l)**-1.)+
2 y(i+1+42#nth)+*((hh(i)/hh(i+1))*(hh(i)+hh(i+1))**-1.)
dwy(i-1+2*nth)*2.+*(hh(i)**-1.)*(hh(i)+hh(i+1))**-1.-
1 2.*y(i+2*nth)/(hh(i)*hh(i+1))+
2 y(i+l+2+*nth)*2.+*(hh(i+1)*+-1.)*((hh(i)+hh(i+1))**-1.)
pp=parnd(i)
uu=y(i)
ww=y(i+2*nth)
uvel=y(i+nth)
yp(i+nth)=dampea(a,b,c,d,co,ww,uu,nu,cu,uvel)
wvelsy(i+3*nth)
yp(i+3*nth)=dampeb(a,b,c,d,co,ww,uu,nu,pp,cw,wvel)
10 continue
return
end
12222223223 XX22 222322222222 X2 222222222222 22222222 0dd)22
SUBROUTINE DAMPDFL.f
(2323222222222 2222 22222222222 22222222222 2222222222224
subroutine dampdfl(t,y,yp,rpar,ipar)
parameter (nth=20)
implicit double precision (a-h,o0-z)
real*8 a,b,c,co,d,nu,parnd(nth)
real*8 x(nth),hh(nth),pp,uu,ww
real*8 cu,cw,uvel,wvel
dimension y(4*nth),yp(4*nth),rpar(500)
integer i,j,ipar(nth)
yp(1l--nth)=u-velocity
yp(nth+l--2#*nth)=u-acc.
yp(2*nth+l1--3*nth)=w-velocity
yp(3*nth+l--4*nth)=w-acc.
nus=rpar(2)
cu=ypar(6)
cw=xpar(7)
c first set parameters (same as dampall.f)
do 5 j=1,nth,1
X(j)=rpar(j+3*nth)
hh(j)=rpar(j+2¢nth)
parnd(j)=rpar(j+nth)
yp(J)=y(j+nth)
yp(j+2*nth)=y(j+3*nth)
5 continue
[###44444## PIRST NODES BOUNDARY CONDITION ######¥i####
a=y(2)/hh(1)
b=0.0
c=0.0
next forward difference for (d) notetrwwre
equal spacing here(symmetry)

noaao

aoaa

aaQ

90

d=(2.%(y(2+2*nth)-y(1+2*nth)))/hh(1)**2,
next velocity and acc. in u-dir (yp(1l)=u-vel.,
yp(l+nth)=u-acc. at theta=0.0)
yp(1)=0.0
yp(1+nth)=0.0
co=0.0
pp=parnd(1)
def in u-dir at node 1 = 0.0
uu=0.0
ww=y(l+2*nth)
wvel=y(1+3*nth)
next velocity and accelleration in w-dir
yp(1+2*nth)=y(1+3*nth)
next equation from L’Bopitals Rule applied to dampeb.f
yp(1+3*nth)=(a*d)-(wwrd)+(ar*2,)-(a*ww)
+(ard)-(wwrd)+a**2, - (wwra)+ata-2.*ww
+nu* (-~ (wwrd)-(wwra)+(ard)+(2.
rav+2,)+(ard)-(wwrd)-(wwra)+ata-2,+
ww)+pp-cw*wvel
next edge conditions at maxtheta ####fit##s#+
here=backwards difference equations with equal spacing
i=nth
a=y(nth-2)*(hh(nth)/(hh(nth-1)+*(hh(nth)+hh(nth-1))))-
y(nth-1)+*((hh(nth)+hh(nth-1))/(hh(nth)*hh(nth-1)))+
y(nth)*(1./hh(nth-1)+hh(nth)/(hh(nth-1)*
(hh(nth-1)+hh(nth))))
b=y(i-2)*2.*(hh(i-1)#**-1.)*(hh(i-1)+hh(i))**-1.-
2.*y(i-1)/(hh(i-1)*hh(i))+
y(i)*2.*(hh(i)**-1.)*((hh(i-1)+hh(i))**-1.)
c=y(3*nth-2)+*(hh(nth)/(hh(nth-1)*(hh(nth)+hh(nth-1))))-
y(3*nth-1)*((hh(nth)+hh(nth-1))/(hh(nth)*hh(nth-1)))+
y(3*nth)*(1./hh(nth-1)+hh(nth)/{hh{nth-1)*(hh(nth-1)
+hh(nth))))
d=y(i-2+2*nth)*2.%(hh(i-1)#+*-1.)*(hh(i-1)+hh(i))**-1.-
2.*y(i~1+2*nth)/(hh(i-1)*hh(i))+
y(i+2*nth)*2.*(hh(i)**-1.)*((hh(i-1)+hh(i))**~1.)
pp=parnd(nth)
uu=y(nth)
ww=y(3*nth)
uvel=y(2*nth)
wvel=y(4*nth)
co=dcos (x(nth))/dsin(x(nth))
yp(2*nth)=dampea(a,b,c,d,co,ww,uu,nu,cu,uvel)
yp(4*nth)=dampeb(a,b,c,d,co,ww,uu,nu,pp,cw,wvel)
yp(nth)=y(2*nth)
yp(3*nth)=y(4*nth)

..

W=

W N = N - W N -

LS]

$$ NEXT CALCULATE YP FOR THE INTERIOR NODBS $$$$$$$$

do 10 i=2,nth-1,1

co=dcos(x(i))/dsin(x(i))
a=-y(i-1)*((hh(i+1)/hh(i))*(1./(hh(i)+hh(i+1))))+

1 y(i)*(1l./hh(i)-1./hh(i+l1))+

2 y(i+1l)*((hh(i)/hh(i+1))*(1./(hh(i)+hh(i+1))))
b=y(i-1)*2.%(hh(i)**-1.)*(hh(i)+hh(i+1))**-1.-

1 2.*y(i)/(bhh(i)*hh(i+1))+

2 y(i+l)*2.+(hh(i+1)**-1.)*((hh(i)+hh(i+1))**-1.)
c=-y(i-1+2*nth)*((hh(i+1)/hh(i))*(hh(i)+hh(i+1))**-1.)+
1 y(i+2*nth)*(hh(i)**-1.-hh(i+l)#**=-1,)+
2 y(i+l+2+nth)*((hh(i)/hh(i+1))*(hh(i)+hh(i+1))**-1,)
d=y(i-1+2#*nth)*2.*(hh(i)**-1.)*(hh(i)+hh(i+1))*~-1.-

1 2.*y(i+2+*nth)/(hh(i)*hh(i+1))+
2 y(i+1+42+*nth)*2.#(hh(i+1)**-1,.)*((hh(i)+hh(i+1))**-1,)

91

aan

aaaa

aaao

naa

aa

10

5

1
2 y(i#1)%2.*(hh(i+1)**-1.)*((hh(i)+hh(i+1))**-1.)

next equation call function ea.f=eq. 9a
pp=parnd(i)
uu=y(i)
wwey(i+2*nth)
uvel=y(i+nth)
yp(i+nth)=dampea(a,b,c,d,co,ww,uu,nu,cu,uvel)
next equation is 9b=eb
wvel=y(i+3*nth)
yp(i+3*nth)=dampeb(a,b,c,d,co,ww,uu,nu,pp,cw,wvel)
continue
return
end

I 2222223222222 2224222222222 2242228222 2222222222222%2)]

SUBROUTINE DAMPDFPT.f

IE 2222222222222 X222 222222222 2222 Rid22 222022 2R

subroutine dampdfpt(t,y,yp,rpar,ipar)
parameter (nth=20)
implicit double precision (a-h,o0-2)
real*g8 a,b,c,co,d,nu,parnd(nth)
real*8 x(nth),hh(nth),pp,uu,ww
real*8 cu,cw,uvel,wvel,rpar(500)
dimension y(nth+nth+nth+nth),yp(nth+nth+nth+nth)
integer i,ipar(nth)
yp(1~-nth)=u-velocity
yp(nth+l--2+nth)=u-acc.
yp(2*nth+l--3*nth)=w-velocity
yp(3*nth+l--4*nth)=w-acc.
nu=rpar(2)
cu=rpar(6)
cw=rpar(7)
do 5 j=1,nth,l1
x(Jj)=rpar(j+3*nth)
hh(j)=rpar(j+2+*nth)
parnd(j)=rpar(j+nth)
YP(J)=y(j+nth)
yp(j+2*nth)=y(j+3*nth)
continue
#####4## FIRST NODES BOUNDARY CONDITIONS ###########
the velocity and accelleration at node # 1 =
zero in u-dir and w-dir
yp(1)=0.0
yp(nth+1)=0.0
yp(2*nth+1)=0.0
yP(3*nth+1)=0.0
next edge conditions at maxtheta ##F#######
next velocity and acceleration at node #
nth = zero in u-dir and w-dir
yp(nth)=0.0
yp(2*nth)=0.0
yp(3*nth)=0.0
yp(4*nth)=0.0
$$$$$$$S NEXT CALCULATE YP FOR INTERIOR NODES $$$$
co=dcos(x(1))/dsin(x(i))
a,b,c,d are central difference formulas for
du/dtheta,d**2u/dtheta**2, etc
a=-y(i-1)*((hh(i+1)/hh(i))*(1./(hh(i)+hh(i+1))))+
y{(i)*(1./hh(i)-1./hh{i+1))+

2 y(i+l)*((hh(i)/hh(i+1))*(1./(hh(i)+hh(i+l))))

b=y(i-1)#2.%(hh(i)**-1.)*(hh(i)+hh(i+l))**-1.-
2.*y(1)/(hh(i)*hh(i+1))+

92

C
C
C

naaa

QaQ

*xxx**NOTE s

cm-y(i-1+2*nth)*((hh(i+1)/hh(i))*(hh(i)+hh(i+1))**-1.)+
y(i+2*nth)*(hh(i)**-1.-hh(i+1)**_1.)+

2 y(i+1+2+*nth)*((hh(i)/hh(i+1))*(hh(i)+hh(i+1))**-1.)

d=y(i-142*nth)*2.*(hh(i)**-1.)*(hh(i)+hh(i+1))**-1.—
2.*y(i+2*nth)/(hh(i)*hh(i+1))+

2 y(i+1+2*nth)*2.+(hh(i+1)**-1.)*((hh(i)+hh(i+1))**-1.)

next equation call function dampea.f=eq. 9a

pp=parnd(i)

uu=y(i)

ww=y(i+2+*nth)

uvel=y(i+nth)
yp(i+nth)=dampea(a,b,c,d,co,ww,uu,nu,cu,uvel)

next equation is 9b=eb

wvel=y(i+3*nth)
yp(i+3*nth)=dampeb(a,b,c,d,co,ww,uu,nu,pp,cw,wvel)
continue

return

end

2222222222222 222222 RRd2R2 il isii sl sdd

SUBROUTINE DAMPDFIM.f

(2222232322322 22222222 22222222 2222222222222 222222022}

subroutine dampdfim(t,y,yp.rpar,ipar)
parameter (nth=20)

parameter (lwa=33)

implicit double precision (a-h,o-z)
real*8 a,b,c,co,d,nu,parnd(nth)
real*8 x(nth),hh(nth),pp,uu,ww
real*8 cu,cw,uvel,wvel,fvec(3),xx(3)
real*8 yl,y2,y3,y4,wa(lwa)

dimension y(4*nth-4),rpar(500)
dimension yp(4*nth-4)

integer i,ipar(nth)

common/propl/ x,y1,y2,y3,Y4,Y5,y6,yY7,y8,xend
external dampfcn
yp(l--nth-1)=u-velocity
yp(nth-=2*nth-2)=u-acc.
yp(2¢*nth-1--3*nth-3)=w-velocity
yp(3*nth-2--4*nth-4)=w-acc.
nu=rpar(2)

cu=rpar(6)

cw=rpar(7)

see calling statement in dampall.f

do 5 j=1,nth,1

x(Jj)=rpar(j+3*nth)

hh(j)=rpar(j+2+*nth)

parnd(j)=rpar(j+nth)

if(j.eq.nth)goto 5

yP(3)=y(3+nth-1)

yp(j+2*nth-2)=y(j+3*nth-3)
continue

######H# FIRST NODES BOUNDARY CONDITIONS ####+¥#####

#4444 first at theta=0 degrees "peak” ########
a=y(2)/hh(1)
b=0.0

c=0.0

next forwards difference for d=d**w/dtheta*+2
note***+s+ for equal spacing here
d=(2.*(y(2*nth)=-y(2*nth=1)))/hh(1)**2,

next velocity and acc. in u-dir (yp(1l)=u-vel.,
yp(l+4nth)=u-acc. at theta=0.0)

yp(1)=0.0

93

SOLVING 4*(nth-1) EQUATIONS y’s are different

aa

(o}

Qaa

10

yP(nth)=0.0
co=0.0
pp=parnd(1)
def in u-dir at node 1 = 0.0
uu=0,0
ww=y(2¢*nth-1)
wvel=y(3*nth-2)
next velocity and accelleration in w-dir
yp(2*nth-1)=y(3*nth-2)
next equation was generated by applying L’Hopitals
Rule to eq. dampeb.f
yp(3*nth-2)=(a*d)-(wwrd)+(a**2,)-(atww)+(ard)~-(
1 wwtd)+ar*2, - (wwra)+at+a-2. *wwtnut (- (wwrd)
2 —(wwrta)+(ard)+(2.*ar*2,)+(ard)-(wwrd)~
3 (wwra)+a+a-2, *ww)+pp-cwruvel
$$$8$8$S$8S$S NEXT CALCULATE YP FOR INTERIOR NODES
co=dcos(x(1i))/dsin(x(i))
a=-y(i-1)*((hh(i+1)/hh(i))*(1./(hh(i)+
1 hh(i+1))))+y(i)*(1./hh(i)-1./hh(i+1))+y(i+1)*
2 ((hh(i)/hh(i+1))*(1./(hh(i)+hh(i+1))))
b=y(i-1)*2.*(hh(i)**~1.)*(hh(i)+hh(i+1))**-1.-
1 2.*y(i)/(hh(i)*hh(i+1))+y(i+l)*2.*(hh(i+1)**-1.)
2 *((hh(i)+hh(i+1))**-1.)
c=-y(i+2*nth-3)*((hh(i+1)/hh(i))*(hh(i)+hh(i+1))**-1.)+
1 y(i+2*nth-2)*(hh(i)**-1.-hh(i+1)**-1.)+
2 y(i+2*nth-1)*((hh(i)/hh(i+1))*(hh(i)+hh(i+1))**-1.)
d=y(i+2*nth-3)*2.#(hh(i)**-1,)*(hh(i)+hh(i+l))**-1.-
1 2.*y(i+2*nth-2)/(hh(i)*hh(i+l1))+
2 y(i+2*nth-1)*2.*(hh(i+1)*+*-1.)*((hh(i)+hh(i+1))**-1.)
pp=~parnd(i)
uu=y(i)
ww=y(i+2%nth-2)
uvel=y(i+nth-1)
wvel=y(i+3*nth-3)
yp(i+nth-1)=dampea(a,b,c,d,co,ww,uu,nu,cu,uvel)
yp(i+3*nth-3)=dampeb(a,b,c,d,co,ww,uu,nu,pp,cw,wvel)
continue
next edge conditions at maxtheta FHFFFFFEFEHF
next solve for u and w based on circle and slope b.c.’s
note "end” is an imaginary node
yl=y(nth-1)
y2=y(nth-2)
yS=y(nth-3)
y6=y(nth-4)
y3=y(3*nth-3)
y4=y(3*nth-4)
y7=y(3*nth-5)
y8=y(3*nth-6)
iiopt=2
n=3
if(xx(3).eq.0.0)then
xx(1)=xpar(4)
xx(2)=rpar(5)
xx(3)=dsin(x(nth))*(1.-xx(2))+xx(1)*dcos(x(nth))
else
endif
tol2=1,0B-08
iinfo=0.0
xend=x(nth)
next solve a set of 3 nonlinear algebraic equations

94

NaAOOONOn

Qaaa

to "locate” node nth position
call dnsqge(dampfcn, jac,iiopt,n,xx, fvec,tol2,nprint,
+iinfo,wa,lwa)

xx(1)=u-deflection,xx(2)=w-deflection

rpar(4)=xx(1)

rpar(5)=xx(2)

uend=rpar(4)

wend=rpar(5)

xend=x(nth)

hhend=hh(nth)

i=nth-1

co=dcos(x(1i))/dsin(x(i))

a,b,c,d are central difference formulas for

du/dtheta,d**2u/dthetar**2, etc
a=-y(i—1)*((hhend/hh(i))*(l /(hh(1)+hhend)))+
1 y(i)*(1./hh(i)-1./hhend)+
2 uend*((hh(i)/hhend)*(1./(hh(i)+hhend)))
b=y(i-1)#*2.*(hh(i)**-1.)*(hh(i)+hhend)*#*-1.-
1 2.*y(i)/(hh(i)*hhend)+
2 uend*2.*(hhend**-1.)*((hh(i)+hhend)**-1.)
c=-y(i+2*nth-3)*((hhend/hh(i))*(hh(i)+hhend)**-1.)+
1 y(i+2*nth-2)*(hh(i)**-1.-hhend**-1.)+
2 wend*((hh(i)/hhend)*(hh(i)+hhend)**-1.)
d=y(i+2#nth-3)*2 .+ (hh(i)**-1.)*(hh(i)+hhend)**-1.-
1 2.*y(i+2*nth-2)/(hh(i)*hhend)+
2 wend*2.*(hhend**-1.)*((hh(i)+hhend)t*-1.)

pp=parnd(i)

uu=y(i)

ww=y(i+2*nth-2)

uvel=y(i+nth-1)

wvel=y(i+3*nth-3)

yp{(i+nth-1)=dampea(a,b,c,d,co,ww,uu,nu,cu,uvel)

yp(i+3*nth-3)=dampeb(a,b,c,d,co,ww,uu,nu,pp,cw,wvel)
return

end

(2222222222222 2232222222 2222 2222222222222 X222 222 %]

SUBROUTINE DAMPFCN.f
2222232222222 X223 XX2XZ 2222 X222 2 add22XX22 2222 X2 X2X 2]

SUBROUTINE DAMPFCN.F IS CALLED FROM DAMPDFIM.F
“INFINITE MASS B.C." USED to DERTERMINE VALUES
AT NODE POINT "NTH"

subroutine dampfen(n,xx,fvec,iflag)

parameter (nth=20)

implicit double precision(a-h,o-z)

double precision xx(3),fvec(3)

real*8 x(nth),ynthml,ynthm2

real*8 ynthm3,ynthmd,co,si

real+*8 radius,yl,y2,y3,y4,Y5,Y6,y7,y8,xend
real+*8 x1,x2,x3,x4

integer n,iflag

common/propl/ x,yl,y2,y3,Y4,¥5,yY6,y7,y8,xend
note:xend=x(nth)

xnth=gi*(1.-xx(2))+xx(1)*co
ynth=co*(1l.-xx(2))-xx(1)*si

CIRCLE BOUNDARY CONDITION

si=dsin(xend)

co=dcos (xend)

radius=gi/co

fvec(l)=(si*(1.-xx(2))+xx(l)*co)**2,.+

+((l.-xx(2))*co-xx(1)*si-1./co)**2,.-(radius)*+*2,
SLOPE BOUNDARY CONDITION
xl=dsin(x(nth-1))*(1.-y3)+yl*dcos(x(nth-1))

95

ynthml=dcos(x(nth-1))*(1.-y3)-yl+*dsin(x(nth-1))
x2=dsin(x(nth-2))*(1.-y4)+y2*dcos(x(nth-2))
ynthm2adcos (x(nth-2))*(1.-y4)-y2*dsin(x(nth~2))
x3=dsin{x(nth-3))*(1.-y7)+yS+*dcos(x(nth-3))
ynthm3=dcos{x(nth-3))*(1l.-y7)-y5*dsin(x(nth-3))
x4=dgin(x(nth-4))*(1.-y8)+y6*dcos(x(nth-4))
ynthmé=sdcos (x(nth-4))*(1l.-y8)-y6*dsin(x(nth-4))
c note:fvec(2) used to reduce size of fvec(3) equation
fvec(2)=xx(3)~(si*(1l.-xx(2))+xx(1)*co)
fvec(3)=-(~1./dcos(xend)+co*(1.-xx(2))-xx(1)*si
1)/ (si*(1.-xx(2))+xx(1)*co)
2+(co*(1.-xx(2))-xx(1)*s8i)*((xx(3)-x2)*(xx(3)~
2x3)* (xx(3)~-x4)+(xx(3)-
3x1)*(xX(3)-x3)*(xx(3)-x4)+(xx(3)-x1)*(xx(3)~
4x2)* (xx(3)-x4)+(xx(3)-x1)*(xx(3)-%x2)*(xx(3)-%x3))
S/((xX(3)~%x1)*(xx(3)-%x2)*(xx(3)-%x3)*(xx(3)-x4))
6+ynthmle ((Xx(3)~x2)*(xx(3)-x3)*(xx(3)-x4))
7/((x1-xx(3))*(X1-x2)*(x1-x3)*(x1-x4))
8+ynthm2* ((xx(3)-x1)*(xx(3)-x3)*(xx(3)-x4))
9/ ((x2-x%x(3))*(X2-x1)*(x2~-%x3)*(x2-x4))
1+ynthm3+ ((xx(3)-x1)*(xx(3)-%x2)* (xx(3)-x4))
2/ ((x3=-%xx(3))*(x3-x1)*(x3-x2)*(x3-x4))
3+ynthmd» ((xx(3)-x1)*(xx(3)-x2)*(xx(3)-x3))
4/ ((%4-%xx(3))*(x4-x1)*(x4-%X2)*(x4-x3))
return
end
[ZZ2Z22X 23X 2222 2222223222222 222222 2222222223 3}

C
Cc SUBROUTINE DAMPSTRESS.f
C (222X RSS2 2RSSR 2222222222 X2 224
subroutine dampstress(x,y. hh,nu,ibc,epi,eth,
+spi,sth,ethmax,epimax,ethmin,epimin,
+sthmax,spimax,sthmin,spimin)
parameter (nth=20)
implicit double precision (a-h,o-2)
real*s a,c
real*8 epi(nth),eth(nth),spi(nth),sth(nth)
real*8 hh(nth),nu,x(nth)
real*8 sthmax,spimax,sthmin,spimin
real*8 ethmax,epimax,ethmin,epimin
dimension y(nth+nth+nth+nth)
integer i,ibc
c first for node # 1
if(ibc.eq.3)then
if(x(1).eq.0.)then
a=-y(1)*((2*hh(2)+hh(3))/(hh(2)*(hh(2)+hh(3))))+
y(2)*((hh(2)+hh(3))/(hkh(2)*hh(3)))-y(3)
((hh(2))/(hh(3)(hh(2)+hh(3))))
c=-y(142*nth)*((2.~hh(2)+hh(3))/(hh(2)*(hh(2)+hh(3))))+
y(2+2*nth)*((hh(2)+hh(3))/(hh(2)*hh(3)))~
y(3+2#nth)*(hh(2)/(hh(3)*(hh(2)+hh(3))))
eth(1)=(a-y(1+2*nth))+(1./2.)*(c+y(l))**2,
epi(1)=(a-y(14+2*nth))
sth(1)=(eth(1)+nu*epi(1))

N - N

spi(l)=(epi(l)+nuteth(l))
else
a=-y(1)*((2*hh(2)+hh(3))/(hh(2)*(hh(2)+hh(3))))+
y(2)*((hh(2)+hh(3))/(hh(2)*hh(3)))-y(3)
((hh(2))/(hh(3)(hh(2)+hh(3))))
c--y(1+2*nth)'((2.'hh(2)+hh(3))/(hh(Z)*(hh(2)+hh(3))))+
y(2+2*nth)*((hh(2)+hh(3))/(hh(2)*hh(3)))-
y(3+2*nth)'(hh(2)/(hh(3)'(hh(2)+hh(3))))
eth(1l)=(a-y(1+42*nth))+(1./2.)*(c+y(1l))**2.

N =

N -

96

C
C
C
C

30

40

1
2

1
2

N -

WA -

* %

* %

OV N N =

epi(l)=(y(l)*(dcos(x(1))/dsin(x(1)))-y(1+2*nth))
sth(l)=(eth(1l)+nu*epi(l))
spi(l)=(epi(1l)+nureth(l))
endif
else
co=0.0
a=y(2)/hh(1)
eth(l)=a-y(l+2*nth)+(0.5)*y(1)**2,
epi(l)=a-y(1+2*nth)
sth(l)=eth(1l)+nu*epi(1l)
spi(l)=epi(1l)+nu*eth(l)
endif
do 30 i=2,nth-1,1
a=-y(i-1)*((hh(i+1)/hh(i))*(1./(hh(i)+hh(i+1)))}))+
y(i)*(1l./hh(i)~1./hh(i+1))+y(i+1)*((hh(i)/
hh(i+1))*(1./(hh(i)+hh(i+l1))))
c=-y(i-142*nth)*((hh(i+1)/hh(i))*(hh(i)+hh(i+1))**-1.)+
y(i+2*nth)*(hh(i)**-1.-hh(i+1l)**-1.)+
y(i+1+2#*nth)*((hh(i)/hh(i+1))*(hh(i)+hh(i+1))**-1.)
eth(i)=a-y(i+2*nth)+(0.5)*(c+y(i))**2,
epi(i)=y(i)*(dcos(x(i))/dsin(x(i)))-y(i+2*nth)
sth(i)=eth(i)+nurepi(i)
spi(i)=epi(i)+nureth(i)
continue
next for node # nth
a=y(nth-2)*(hh(nth)/(hh(nth-1)#(hh(nth)+hh(nth-1))
y(nth-1)*((hh(nth)+hh(nth-1))/(hh(nth)*hh(nth-1))
*((2*hh(nth)+hh(nth-1))/(hh(nth)*(hh(nth-1)+hh(nt
c=y(3*nth-2)*(hh(nth)/(hh(nth-1)*(hh(nth)+hh(nth-1)
y(3*nth-1)*((hh(nth)+hh(nth-1))/(hh(nth)*hh(nth-1)
y(3*nth)*((2*hh(nth)+hh(nth-1))/(hh(nth)*(hh(nth-1
+hh(nth))))
eth(nth)=a-y(3*nth)+(0.5)*(c+y(nth))**2,
epi(nth)=y(nth)*(dcos(x(nth))/dsin(x(nth)))~-y(3*nth)
sth(nth)=eth(nth)+nu*epi(nth)
spi(nth)=epi(nth)+nu*eth(nth)
do 40 i=1,nth,1
if(sth(i).gt.sthmax)sthmax=ath(i)
if(spi(i).gt.spimax)spimax=gpi(i)
if(sth(i).lt.sthmin)sthmin=sth(i)
if(spi(i).lt.spimin)spimin=8pi(i)
if(eth(i).gt.ethmax)ethmax=eth(i)
if(epi(i).gt.epimax)epimax=epi(i)
if(eth(i).1lt.ethmin)ethmin=eth(i)
if(epi(i).lt.epimin)epimin=epi(i)
continue
return
end
1424222222222 22222 2222222222 22222222222 222222

FUNCTION DAMPEA.f

LA 222X RX2 2222222222222 22222222222 X2 2222222222 XX}

FUNCTION DAMPEA.F IS THE BEQUATION FOR U-ACCELERATION
function dampea(a,b,c,d,co,ww,uu,nu,cu,uvel)
implicit double precision (a-h,o0-z)

real*8 a,b,c,d,co,ww,uy,nu,cu,uvel

dampea=b-c+c*d+(uu) *d+(ww) *c+(wwruu) -
(1/2.)%c**3 . -(3.%uu/2.)*c**2, -
((3.*0“"2.)/2-)*¢-uu'*3.
/2.+a*co-uu*co**2 ,+(co/2,)*c**2 . +((uu*
co))*c+((uu**2.)*co)/2.+nu*(-uu-c-{2.uurcor*c)
+(wwrc)+(uurtww)-(co*c**2,)/2.-(3.*(uu**2,)*co)
/2.)-curuvel

T o

97

nth)
)

(e XeNe Xe!

* ¥

* &

» WONAUVEE WA =

return
end
(2242222222222 222222 22222222 Y2 T R YR SE y)

FUNCTION DAMPEB.f
L2222 2222222222222 222222222 YRR IT YT A2 T2 XY YY)
FUNCTION DAMPEB.F IS THE BQUATION FOR W-ACCELERATION
function dampeb(a,b,c,d,co,ww,uu,nu,pp,cvw,wvel)
implicit double precision (a-h,o-z)
real+*8 a,b,c,d,co,ww,uu,nu,pp,cw,wvel
dampeb=(cota*c)-(cotww*c)+(co*c**3,)/2.+(3.*co*uu
*c**2,.)/2.+(3.*cor*cruu*r*2,)/2.+(uurtcora)
-(co*uurww)+(coruu**3,)/2.+(b*c)-c**2./
(2.)+(3.*d*c**2,)/2.4+(2.%uu*d*c)+(3.*a*cr*
2.)/2.4(2.%*uurarc)+(uurb)-(uurc)+(3.
*d*uu**2.)/2.+(3,.va*uur*2,.)/2.+(avd)-(
wwrd)+ar*2, - (wwrta)+atuurco-2. *wwt(uu*c)+uu
**2./2,.4nu*((-uurc)-(wwrcortc)-(uur+2,)
/2.-(ww*uu*co)+(corarc)-(c**2,.)/2.4+(2.*uu
*co*a)+(uurcord)-({wwrd)-(wwra)+atuurco-2.*
ww)+pp~cwtwvel
return
end

98

Appendix J. Static MATLAB Program

% 2222222222322 2222222222222 2R 22 2222t ddti 222222222 2222222 2]

$ THIS IS THE MATLAB PROGRAM "STATIC.m" EXECUTE AFTER

% LOADING THE FILE ndstatic.m IN MATLAB.

3 22 XZ2222223 222222223 X222 X222 2222222222222 22222222222 222222222]
clg

axis([0,100,0,100])

hold on

gl=sprintf(’TOTAL # OF NODES= %g’,hh(1,1));

text(10,100,91)

g2=sprintf ('RADIUS OF SPHERE= %g’,hh(3,1));

text(10,95,92)

text (40,95, INCHES’)

g3=sprintf ('THICKNESS OF SPHERE= %g’,hh(12,1));
text(10,90,93)

text (45,90, 'INCHES’)

g4=sprintf (’YOUNGS MODULUS FOR THE MEMBRANE IS= %g’,hh(4,1));
text(10,85,q94)

text (60,85, 'PSI’)

gS5=sprintf(’THETA MIN.= %g’,hh(5,1));

text(10,80,95)

text (30,80, 'DEGREES’)

gé=sprintf('THETA MAX.= %g’,hh(6,1));

text(10,75,96)

text (30,75, 'DEGREES’)

g7=sprintf(’POISSONS RATIO= %g’,hh(13,1));

text(10,70,97)

g8=sprintf(‘'ROOM HERE= %g‘,hh(11,1));

g9=sprintf(’'IBC TYPE OF BOUNDARY CONDITIONS= %g’,hh(2,1));
text(10,65,g99)

gl0=sprintf ('IOPT TYPE OF CLUSTERING= %g’,hh(8,1));
text(10,69,g910)

gll=sprintf(’'BETA IS THE CLUSTERING PARAMETER= %g’,hh(7,1));
text(10,55,9l11)

gl7=sprintf(’'THE TOTAL # OF STEPS SAVED IS %g‘,hh(14,1));
text(10,50,917)

gl8=sprintf(’'IPRESS TYPE OF PRESSURE DISTRIBUTION= %g’,hh(39,1));
text(10,45,918)

pause
clg

hold off

3 (22X X222 2222222222222 2222222 2222222 2222222 2ddi222222 22022222222
% NEXT DEFORMED SHAPES AT EACH PRESSURE DISTRIBUTION

‘ [ZXXX2ZZ XXX X222 22222224222 22X 22222222 22222222222 Rt Xlsldd]

text(0.1,0.5, 'STATIC ANIMATION?? YES:ENTER 1 ,NO:RETURN’,’sc’)
ee=input(’ ’);

clg

if ee==1,

nth=[hh(1,1)];

nn=[{nth];

if hh(2,1)==6,hh(2,1)=3;,end

if hh(2,1)==7,hh(2,1)=3;,end

if hh(2,1)==3,
kk(1,1)=[-1./8in((hh(6,1)~90.0)*(3.14159/180.))];
axis([-hh(30,1) hh(30,1) kk(1,1) hh(32,1)])

else

axis([-hh(30,1) hh(30,1) hh(31,1) hh(32,1)})

end

99

glgg(ft(l:nth,1),ff(1:nth,2),’o'.ff(ltnth,l),ff(ltnth,2))
old on

title('DEFORMED AND UNDEFORMED SPHERR'’)

xlabel(’‘X-AXIS')

ylabel ('Y _AXIS’)

s

if hh(2,1)==3,
dd(2,1)=[0.0];
dd(3,1)=[£ff(nn,1)])
dd(2,2)=[-1./8in((hh(6,1)-90.0)*(3.14159/180.))];
dd(1,2)={ff(nn,2)]
dd(3,2)=[£f£f(nn,2)]
plot(dd(:,1),dd(:,2),°:")
end

.
’

}
h
i
]
i
2

L
plot(-££(1l:nth,1),££(1:nth,2),’0’,-££(1snth,1),££(1:nth,2))
nn=[nn+nth};
pause
for i=2:hh(14,1)
plot(ff(nn-nth+l:nn,1),ff(nn-nth+l:nn,2))
plot(-ff(nn-nth+l:nn,1),ff(nn-nth+l:nn,2))
plot(-£f£(1:nth,1),£f£f(1:nth,2), ‘0’ ,~-f£f(1:nth,1),£f£(1:nth,2))
plot(£f£f(1:nth,1),f£f(1snth,2),’0’,£f£(1:nth,1),£f£(1:nth,2))
if hh(2,1)==3,
dd(2,1)=[0.0];
dd(3,1)=[{ff(nn,1)])
dd(2,2)=[-1./sin((
dd(1,2)=[£ff(nn,2)]
)
]

hh(6,1)-90.0)*(3.14159/180.))];
dd(1,1)=[-££(nn,1)];

dd(3,2)=[ff(nn,2)];

if i==2,11=dd;,end
plot(hh(30,1),kk(1,1)+(i/(hh(14,1)))*(hh(32,1)-kk(1,1)),0’)
piot(dd(:,l),dd(:,Z),':')

else
pl:t(hh(30,1),hh(31,1)+(i/(hh(14,1)))*(hh(32,1)-hh(31,1)),'o')
en

pause
plot(ff(nn-nth+l:nn,1),ff(nn-nth+l:nn,2),’4i’)
plot(-ff(nn-nth+l:nn,1),ff(nn-nth+l:nn,2),’1i’)
if hh(2,1)==3,

end

nn=[nn+nth};

end

pause

hold off

clg

1 3 [ZZIXXSYE2XEAI XS 2 SIS S22 2222222222222 2 2 lddsdlslilssltsd sy

NEXT U VERSUS THETA CURVES AT EACH PRESSURE DISTRIBUTION
‘ (2 XXX SZ IS Z 22222222222 2 X2 R A2 X2 X222 2dfd)
axis([hh(5,1) hh(6,1) hh(15,1) hh(16,1)])

nn=[nth};

ggl=gg*(180./3.14159);

plot(ggl(:,1),ff(nn-nth+l:nn,3))

hold on

title(’U/R DEFORMATION VS. THETA')

xlabel('THETA IN DBGREES’)

ylabel(’'U/R DEFORMATION’)

nn={nn+nthi;

for j=2:hh(14,1)

plot(ggl(:,1),f£(1l:nth,3))

plot(ggl(:,1),ff(nn-nth+l:nn,3))

100

plot(hh(6,1),hh(15,1)+(3j/(hh(14,1)))*(hh(16,1)-hh(15,1)), 0’)
ause

glot(ggl(z,1),f£(nn-nth+1:nn,3),'i')

nn=[nn+nth];

end

pause

hold off

clg

t 23222222222 XXX 2222 X222 22 222222222222 42 d 222222 2222222222222 & 24
] NEXT W VERSUS THETA CURVES AT RACH PRESSURE DISTRIBUTION

% [2 2222222222222 X222 2222222223222 2222282222222 22222 282
axis([hh(5,1) hh(6,1) hh(17,1) hh(18,1)])

nn=[nth];

plot(ggl(:,1),ff(nn-nth+l:nn,4))

hold on

title(’'W/R DEFORMATION VS. THETA')
xlabel (’'THETA IN DEGREES’)
ylabel(‘W/R DEFORMATION’)
nn=[nn+nth];

for i=2:hh(14,1)
plot(ggl(:,1),£f£f(1:nth,4))
plot(ggl(:,1),ff(nn-nth+l:nn,4))
plot(hh(6,1),hh(17,1)+(i/(hh(14,1)))*(hh(18,1)-hh(17,1)),’0’)
pause
plot(ggl(:,1),ff(nn-nth+l:nn,4),’i’)
nn=[(nn+nth];

end

pause

hold off

clg

end

ee=[0];

% (22X 2222222222222 222222222222 22222 2222222232222 22222223
ee=[1];

while ee>0.1

clg

text(0.1,0.5,’DISP. VS PRESSURE PLOT? YES:NODE # ,NO RETURN’, ’sc’)
ee=input(’ ’);

if ee>0.0,

nn=[nth];

for j=1:2

if j==2,subplot(221),end

ns=[0];

for i=1:hh(14,1)
fv(i)=abs(ff(ee+ns,3))
et(i)=abs(ff(ee+ns,5))
ns=[ns+nth];

end

fv=fv’;

axis([min(fv) max(fv) min(et) max(et)])
plot(fv,et,’o’,fv,et)

xlabel(‘U/R DISP.’)

ylabel(’'PRESSURE. ')

g31=sprintf(‘PRESSURE VS. U/R DISP. FOR NODE NUMBER %g’,ee);
if j==]1,text(0.3,0.97,931,’sc’),end

if j==2,text(0.01,0.97,g31,’sc’),end

if j==1,pause,end

1f 4==2,gubplot(222),end

ns=[0};

for i=1:hh(14,1)
fv(i)=abs(ff(ee+ns, 4
et(i)=abs(ff(ee+ns,5

.
[4
.
14

S

)
)

.
!
.
’

101

ns=[ns+nth];

end

fu=fv’;

axis([min(fv) max(fv) min(et) max(et) })
plot(fv,et, ‘o’ ,fv,et)

xlabel(’W/R DISP.')

ylabel ('PRESSURE’)

g32=gprintf(’W/R DISP. VS PRESSURE FOR NODE NUMBER %g’,ee);
if j==1,text(0.3,0.97,932,’sc’),end

if j==2,text(0.51,0.97,932,’sc’),end

if j==1,pause,end

if j==2,subplot(223),end

ns=[0]};

for i=1:hh(14,1)
fv(i)=((ff(ee+tns,3)"2.+ff(ee+ns,4)"2.)"0.5);
et(i)=abs(ff(ee+ns,5));

ns={ns+nth)};

end

fv=fv’;

axig([min(fv) max(fv) min(et) max(et)]})
plot(fv,et, ‘o’ ,fv,et)

xlabel (‘RES. DIS.’)

ylabel ('PRESSURR’)

g35=sprintf (PRESSURE VS RESULTANT DISP. FOR NODE NUMBER %g’,ee);
if j==1,text(0.3,0.97,935,’sc’),end

if j==2,text(0.01,0.97,935,’sc’),end

if j==1,pause,end

end

pause

else

ee=[-1.0]};

end

end

3 [Z2Z 222222222222 22 2322 222 222222322 X2 2 22 2222222 X22X22dd 222222}

NEXT STRESS PLOTS FOR EACH PRESSURE DISTRIBUTION

‘ (X222 2222222222222 2222 222232222222 222222222222 2222222Z%222¢2%23]
text(0.1,0.5,'VIEW STRESS PLOTS??? YES:ENTER 1 ,KO: RETURN ‘,’sc’)
ee=input(’ ’);

clg

if ee==},

‘ 'YX XXXXIEZI2222223 2222222222223 222322232232 222342224222222222R442333]

pPP(1,1)=(6];

nth=[hh(1,1)];

nn=[nth};

axis([hh(5,1) hh(6,1) hh(23,1) hh(24,1)])
plgt(ggl(s,l).ff(lznth,pp(l.l)).'o'.ggl(:.1).ff(1:nth.pp(1.1)))
hold on

title('EPSILON PHI VS THETA’)

xlabel ('THETA DEG.’)

ylabel('EPI’)

nn=[nn+nth];

for i=2:hh(14,1)

plot(ggl(:,1),ff(nn-nth+l:nn,pp(1,1)))
plot(hh(6,1),hh(23,1)+(1i/(hh(14,1)))*(hh(24,1)~-hh(23,1)),’0")
pause

plot(ggl(:,1),ff(nn-nth+l:nn,pp(1,1)),’1’)

102

nn=[nn+nth};

end

pause

hold off

clg

% S22 XXX 2222222223222 X222 X222 2222222222222 2ZX2R 22222222 X2 X RZ]
pp(1,1)=[7];

nth=[hh(1,1)];

nn=[nth};

axis([b"(5,1) hh(6,1) hh(21,1) hh(22,1)])
ﬁlig(ggi;=,1):ff(1=nth:PP(1:1))c'0'1991(=.1).ff(1=nthvpp(1r1)))
old on

title(’BEPSILON THE VS THETA’)

xlabel (‘THETA DEG.’)

ylabel(’'ETH’)

nn=[nn+nth];

for i=2:hh(14,1)

plot(ggl(:,1l),ff(nn-nth+l:nn,pp(1l,1)))
plot(hh(6,1),hh(21,1)+(i/(hh(14,1)))*(hh(22,1)-hh(21,1)),’0")
pause

plot(ggl(:,1),ff(nn-nth+l:nn,pp(1l,1)),’i’)

nn=[nn+nth];

end

pause

hold off

clg

% tZXZX222 222222222222 XXX X2 2222222222222 2222222222222 2X22X222 X]
pP(1,1)=[8];

nth=[hh(1,1)];

nn=[nth];

axis([hh(5,1) hh(6,1) hh(27,1) hh(28,1)])

Elc{g(ggl(:,1),f£(1l:nth,pp(1,1)),’0’,991(2,1),££(1:nth,pp(1,1)))
old on

title(’SIGMA-PHI VS THETA')

xlabel (’THETA DEG. ‘)

ylabel(’SPI’)

nn=[nn+nth];

for i=2:hh(14,1)

plot(ggl(:,1),£ff(nn-nth+l:nn,pp(l,1)))
plot(hh(6,1),hh(27,1)+(i/(hh(14,1)))*(hh(28,1)-hh(27,1)),’0’)
pause

plot(ggl(:,1),ff(nn-nth+l:nn,pp(1l,1)),’i’)

nn=[nn+nth];

end

pause

hold off

clg

3 (2 XXX 2 22222222 22222222222 22222232 222222222 22222232222 22222ZX02]
pp(1,1)=[9]);

nth=[hh(1,1)];

nn=[nth];

axis([hh(5,1) hh(6,1) hh(25,1) hh(26,1)))
glig(qql(s,l).ff(lznth.pp(l.l)).'o'.ggl(=.1).ff(1:nth.pp(1,1)))
old on

title(’'SIGMA-THETA VS THETA')
xlabel(’THETA DEG.’)
ylabel(’STH’)

nn=[nn+nth];

for i=2:hh(14,1)
plot(ggl(:,1),ff(nn-nth+l:nn,pp(l,
plot(hh(6,1),hh(25,1)+(i/(hh(14,1)
pause

n»
))*(hh(26,1)-hh(25,1)),'0")

103

plot(gqgl(s:,1),ff(nn-nth+l:nn,pp(l,1)),’i’)

nn=[{nn+nth]};

end

pause

hold off

clg

end

ggl=gg+*(180./3.14159);

hold off

clg

‘ 122422222222 2222222222222 2222222222222 X222 22222 2R 2 0 R R R)
] NEXT FINAL STRESS AND STRAIN CURVES

‘ 1222322222222 2222322222222 2222222220222 2222222223232 X0 R0 TR 2 2
for i=1:2

if i==2,subplot(221),end

al(1l)=hh(23,1);

al(2)=hh(24,1);

axis([hh(5,1) hh(6,1) al(l) al(2)))

tt=[nth*hh(14,1)};
plot(ggl(:,1),ff(tt-nth+l:tt,6),’0’,gg91(:,1),ff(tt-nth+l:tt,6))
title('BPI VS THETA')

xlabel ('THETA DEG.')

ylabel(’EPI.’)

if i==], pause,clg,end

‘ (2222223222222 223222 222X 222232222222 2223 2222222222222 2222222 X4
if i==2,subplot(222),end

al(1l)=hh(21,1);

a1(2)=hh(22,1);

axis([hh(5,1) hh(6,1) al(1l) al(2)}])
plot(ggl(s,l),ff(tt-nth+l:tt,7),’0’,g991(:,1),f£(tt-nth+l:tt,7))
title(’ETH VS THETA')

xlabel ('THETA IN DEG.’)

ylabel('BTH.’)

if i==],pause,clg,end

‘ (A2 2422222222222 2222222222222 X 2222222222222 2222223 XX2X22 2
if j==2,gubplot(223),end

al(l)=hh(27,1);

al(2)=hh(28,1);

axis([hh(5,1) hh(6,1) al(l) al(2)}])
plot(ggl(:,1),ff(tt-nth+l:tt,8),’0’,ggl(z,1),f£(tt-nth+l:tt,8))
title(’SPI VS THRTA’)

xlabel('THETA IN DEG.’)

ylabel(’SPI.’)

if i==1,pause,clg,end

‘ (2222222223222 2222222222222 2222222223 X2 22222222223 XX22XX2Xx]
if i==2,subplot(224),end

al(l)=hh(25,1);

al(2)=hh(26,1);

axis([hh(5,1) hh(6,1) al(1l) al(2)])
plot(ggl(:,1),ff(tt-nth+l:tt,9),’0’,gg91(z,1),ff(tt-nth+l:tt,9))
hold on

title(’STH VS THETA’)

xlabel(‘TBETA IN DEG.’)

ylabel(’'STH.’)

hold off

pause

end

clg

‘ [Z XX X222 222222222222 X2 2 X2 2222222 2222222 X 22222222 22422222222k}
NEXT PRESSURE CURVES VERSUS THETA

‘ 122X 2222222322222 222X2XX2X22XX 222 X222 X RSS2 222 X2 R L)

axis([bh(5,1) hh(6,1) hh(19,1) hh(20,1)])

104

nn=[{nth};
plot(ggl(:,1),ff(nn-nth+l:nn,5))
hold on

title(’'PRESSURE V8. THETA')
xlabel(’TBETA IN DEGREES')

ylabel (‘'PRESSURE’)

nn=[nn+nth];

for j=2:hh(14,1)
plot(ggl(:,1),ff(nn-nth+l:nn,5))
plot(hh(6,1),hh(19,1)+(j/(hh(14,1)-1))*(hh(ZO,l)-hh(lS,l)),'o')
pause
plot(ggl(:,1),ff(nn-nth+l:nn,5),’i’)
nn=[nn+nth);

end

pause

hold off

clg

105

A ndix K Dyn c MA' Program

LAZ A2 AR 222222 a2l 22 2222222222222]

THIS IS THE MATLAB PROGRAM "DYNAMIC.m" EXECUTE AFTER
LOADING THE FILE AAMatrix.m AND bb.mat IN MATLAB.

LA XSRS sddttdddddddladlidd i 222223222222 222 2]

L X X N J

clg

axis([0,100,0,100]})

hold on

gl=gprintf(’TOTAL # OF NODES= %g’,aa(l,1));
text(10,100,q9l1)

g2=gprintf(’'RADIUS OF SPHERE= %g’,aa(3,1));

text(10,95,92)

text (40,95, INCHBS')

g3=sprintf ('THICKNESS OF SPHERE= %g’,aa(l12,1));
text(10,90,93)

text (45,90, INCHES’)

g4=sprintf (’YOUNGS MODULUS FOR THE MENBRANE IS= %g’,aa(4,1));
text(10,85,94)

text (60,85, 'PSI’)

gS=gprintf(’'THETA MINIMUM= %g’,aa(5,1));

text(10,80,g95)

text (30,80, ‘DEGREES ‘)

g6é=sprintf ('THETA MAXIMUM= %g’,aa(6,1));

text(10,75,96)

text (30,75, 'DEGREES’)

g7=sprintf ('POISSONS RATIO= %g’,aa(13,1));

text(10,70,97)

g8=gprintf ('DENSITY= %g’,aa(ll,1));

text(10,65,98)

text (30,65, 'LBS*SEC**2/INCHES**4’)

g9=sprintf(’IBC TYPE OF BOUNDARY CONDITIONS= %g’',aa(2,1));
text(10,60,99)

gl0=gprintf(’IOPT TYPE OF CLUSTERING= %g’,aa(8,1));
text(10,55,4910)

gll=gprintf('BETA CLUSTERING PARAMETER= &g’,aa(7,1));
text(10,50,911)

gl2=gprintf ('DAMPING RATIO FOR U-EQUATIONS= 8g’,aa(9,1));
text(10,45,912)

g13=gprintf (’'DAMPING RATIO FOR W-EQUATIONS= %g’,aa(10,1));
text(10,40,913)

gl7=gprintf (’THE TOTAL # OF TIME STEPS SAVED IS Ag‘,aa(14,1));
text(10,35,4917)

gl18=gprintf (’IPRESS TYPE OF PRESSURE DISTRIBUTION= %g‘,aa(39,1));
text(10,30,918)

g19=sprintf (’'LPTOPT TYPE OF PRES.VS.TIME PARAMETER= g’ ,aa(40,1));
text(10,25,919)

g20=sprintf(‘THE STARTING TIME FOR THE RUN IS %g‘,aa(36,1));
text(10,20,920)

text (60,20, ‘SEC’)

g21l=gprintf(’'THE FINAL TIME FOR THIS RUR= 8g’',aa(37,1));
text(10,15,921)

text (60,15, 'SEC’)

pause

clg

hold off

text(0.1,0.5, ’ANIMATION???? YES:ENTER 1 RO: RETURN’,’sc’)
ee=input(’ ’);

clg

106

if ee==)],

Y I A T T T R T R R R T T R T R PR R P T Y
] NEXT DEFORMED SPHERICAL SHAPE IN ANIMATION SEQUENCE
Y A e R X T I R T T X X

text(0.1,0.5,’VIEW DEFORMING SPHERE?? NO:ENTER 1 ,YES:RETURN’, 'sc’)
zt=input(’ ’);

clg

nth=[{aa(1l,1)];

nn=[nth+l);

no={nn};

if aa(2,1)==4,

gg(l,1)=[-1./8in((aa(6,1)-90.0)*(3.14159/180.))];

axis([-aa(30,1) aa(30,1) gg(l,1) aa(32,1)])

else

axis([-aa(30,1) aa(30,1) aa(31,1) aa(32,1)])

end

plot (bb(2:nth+1,1),bb(2:nth+1,2), 0’ ,bb(2:nth+1,1),bb(2:nth+1,2))
hold on

title(’'DEFORMED AND UNDEFORMED SPHERE’)

xlabel(’'X-AXIS’)

ylabel('Y_AXIS’)
plot(-bb(2:nth+1,1),bb(2:nth+1,2),’0’,~bb(2:nth+l,1),bb(2:nth+1,2))
nn={nn+no};

mm=(nn];

for i=2:aa(14,1)-1

if zt==1,break,end

plot(bb(nn-nth+l:nn,1),bb(nn-nth+l:nn,2))
plot(-bb(nn-nth+l:nn,1),bb(nn-nth+l:nn,2))

%

plot(bb(mm-nth+1l:mm,1),bb(mm-nth+l:nm,2),’0’,...
bb(mm-nth+1l:mm,1),bb(mm-nth+l:mm,2))
plot(‘bb(—nth+1 ‘m' 1) 'bb‘-nth+1 8]‘,2) ’ '0' AR R
~bb (mm-nth+1:mm,1),bb(mm-nth+l:nm,2))

3

if i==2,

g30=sprintf('THE TIME STEP = %g’,bb(nn-nth,1l));
text(0.65,0.03,930,’sc’)

end
plot(aa(30,1),aa(31,1)+(i/(aa(14,1)-1))*(aa(32,1)-aa(31,1)),'0’)
plot(-bb(2:nth+l,1),bb(2:nth+l,2),’0’,-bb(2:nth+1,1),bb(2:nth+1,2))
plot(bb(2:nth+1,1),bb(2:nth+1,2),’0’,bb(2:nth+1,1),bb(2:nth+1,2))
if aa(2,1)==4,

dd(2,1)=[{0.0];

dd(3,1)=[bb(nn,1)1};
dd(2,2)=[-1./8in((aa(6,1)-90.0)*(3.14159/180.))];
dd(1,2)={bb(nn,2)];

dd(3,2)=[bb(nn,2)};

if i==2,ff=dd;,end

plot(dd(s:,1),dd(:,2),’s’)
plot(ff(:,1),££(:,2),':’)

end

pause
plot(bb(nn-nth+l:nn,1),bb(nn-nth+l:nn,2),’i’)
plot(-bb(nn-nth+l:nn,1),bb(nn-nth+l:nn,2),’i’)

if aa(2,1)==4,

plot(dd(s,1),dd(s,2),°1’)

end

nn=[{nn+no}j;

end

hold off

clg

107

3 (2222222222222 2222 2223222232 22222222211 222X XXX XXX yy

% NEXT U DEFLECTION VERSUS THETA ANIMATED IN TIME

% 1222222222222 f2 2222222222222 222 2 XXX 2222222 X
text(0.1,0.5,'VIEW TANGENTIAL DISP.?? NO:ENTER 1 ,YEBS:RETURN’,’'sc’)
gvs=input(’ ’);

clg

axis(f{ aa(5,1) aa(6,1) aa(l5,1) aa(l16,1) })

nn=[nth+l];

plot{cc(:,1),bb(nn-nth+l:nn,3))

hold on

title('U/R DEFORMATION VS. THETA’)

xlabel ('THETA IN DEGREES’)

ylabel(’U/R DRFORMATION')

nn=[{nn+nho};

for j=2:aa(14,1)-1

if 2zv==],break,end

plot(cc(:,1),bb(2:nth+1,3))

plot(cc(:,1),bb(nn-nth+l:nn,3))
plot(aa(é6,1),aa(15,1)+(j/(aa(l4,1)-1))*(aa(16,1)-aa(15,1)),'0’)
pause

plot(cc(:,1),bb(nn-nth+l:nn,3),’1i’)

nn={nn+noj};

end

pause

hold off

clg

‘ (22 2222222222222 222 222222222222 2222222222 2222222222222 222 23222324
L NEXT W DEFLECTION VERSUS THETA ANIMATED IN TIME

‘ 1222222222222 22222222222 2222222222222 2222222222222 223222232 ZX02 1
axis([{ aa(5,1) aa(6,1) aa(l17,1) aa(18,1)1])

nn=[nth+1];

plot(cc(:,1),bb(nn-nth+l:nn,4))

hold on

title(’'W/R DEFORMATION VS. THETA')

xlabel(’'THETA IN DEGREES')

ylabel(’W/R DEFORMATION’)

nn=[nn+noj};

for i=2:aa(14,1)-1

plot(cc(:,1),bb(2:nth+l,4))

plot(cc(:,1),bb(nn-nth+l:nn,4))
plot(aa(6,1),aa(17,1)+(i/(aa(14,1)-1))*(aa(18,1)-aa(17,1)),'0’)
pause

plot(cc(:,1),bb(nn-nth+l:nn,4),°1i’)

nn={nn+noj;

end

pause

hold off

clg

end

ee=(0];

aet=rand(1)

‘ (2222222 X222 X232 24 X222 222222222222 223 22231232223 X2222222]
ee=(1];

while ee>0.1

clg

text(0.1,0.5, 'DISPLACEMENT VS TIME PLOT? YES:NODE #,NO RETURN’,’sc’)
ee=input(’ ‘).

if ee>0.0,

text(0.1,0.3,'U/R,W/R, or RESULTANT/R ENTER 1,2, or 3',’sc’)
xfsinput(’ ‘);

nn={no+l};

‘ (2222232222222 222X X222 222X 2 X222 X222 X222 22 222222222222)22 R/

108

$ NEXT W DEFLECTIONS, VELOCITIES & ACCELERATIONS VERSUS TIME
3 t*i'ttt*t."It**i’ttt't*tt*ttttttttt*ittt***ittttttt*t*t*tt**ttttt
1f xf==]

for j=1:2

if j==2,subplot(221),end

ns={0]};

nn=[no+l];

et(1)==bb(1,1);

for i=l:aa(l14,1)-1

et(i)=bb(nn,l);

nn=[nn+no];

fv(i)=bb(ee+l+ns,3);

ns=[ns+noj;

end

et=et’;

fv=fv’;

axis([min(et) max(et) aa(15,1) aa(16,1)])
plot(et,fv,’o’,et,fv)

xlabel('TIME’)

ylabel(’'U/R DIS.’)

g3l=sprintf('U/R DISP. VS TIME FOR NODE NUMBER %g’,ee);
if j==1,text(0.3,0.97,931,’sc’),end

if j==2,text(0.01,0.97,g31,’sc’),end

if j==1,pause,end

‘ P Y P Y R 222X XYY 222222222 22222222222 X222 2R ot iadlad s
%

if j==2,subplot(222),end

ns=(0];

nn=[no+l1];

et(1l)=bb(1,1);

for i=1:aa(14,1)-1

et(i)=bb(nn,1);

nn=[nn+noj;

fv(i)=bb(ee+l+ns,5);

ns=[ns+noj;

end

et=et’;

fv=fv’;

axis([min(et) max(et) min(fv) max(fv)])
plot(et,fv,’o’,et, fv)

xlabel(‘TIME')

ylabel(’U/R VEL.')

g32=sprintf(’U/R VEL. VS TIME FOR NODE NUMBER %g’,ee);
if j==1,text(0.3,0.97,932,’sc’),end

if j==2,text(0.51,0.97,932,’sc’),end

if j==1,pause,end

end

PR Y 2223222222222 23 2222 X2 222 X2 2 X222 22 XX 22222222 Rlsddsdisdd)
% WA AR AL A A NEXT: U-ACC vs time for node #
if j==2,subplot(223),end

ns=[(0];

nn=[{no+l};

et(1)=bb(1,1);

for i=l:aa(14,1)-1

et(i)=bb(nn,1l);

nn=[nn+no];

fv(i)=bb(ee+l+ns,12);

nn=[ns+noj;

end

et=et’;

fv=fv’;

if min(fv)~=max(fv),

109

axis{[min(et) max(et) min(fv) max(fv)])
plot(et,fv,’c’,et, fv)

title(’U/R ACC. VS TIME’)

xlabel ('TIME’)

ylabel('U/R ACC.’)

else

tegt(0.1,0.3,'0/k ACC. vs. TIME is a CONSTANT'’,’sc’)
en

g40=sprintf(‘U/R ACC. VS TIME FOR NODE NUMBER %g’,ee);
if j==1,text(0.72,0.02,g40,’sc’),end

if j==2,text(0.45,0.5,940,'sc’),end

if j==1,pause,end

‘ (222222222 222222222222 222222 X2 2222222223222 X2X22X222 X222 24
subplot(224)

ns=[0];

nn=[{no+l];

et(1l)=bb(1,1);

for i=]l:aa(14,1)-1

et(i)=bb(nn,l);

nn=[{nn+noj;

fv(i)=bb(ee+l+ns,7);

ns=[{ns+noj;

end

et=et’;

fv=£fv’';

axis([min(et) max(et) aa(19,1) aa(20,1) }])
plot(et,fv,’o’,et,fv)

title(’'PRESSURE VS TIME')

xlabel('TIME’)

ylabel (' PRESSURE’)

pause

end

‘ (A2 22222222222 X322 2222222222 2222222222222 2222222222223 243ZXK02 24

NEXT W DEFLECTIONS, VELOCITIBS & ACCELERATIONS VERSUS TIME
‘ 1222222322222 2222222222242 222 2222222222222 228 1222222222222 22022]
if xf==2

for j=1:2

if j==2,subplot(221),end

ns=(0];

nn=[no+lj};

et(1)=bb(1,1);

for i=l1:aa(14,1)-1

et(i)=bb(nn,1);

nn=[nn+noj;

fv(i)=bb(ee+l+ns,4);

ns=[{ns+noj;

end

et=et’;

fv=fv’;

axis{{ 0.0 max(et) aa(l7,1) aa(18,1)])

plot(et,fv, ‘o’ ,et,fv)

xlabel(’'TIME’)

ylabel(’'W/R DIS.’)

g33=gprintf(’'W/R DISP. VS TIME FOR NODE NUMBER %g’,ee);

if y==1,text(0.3,0.97,933,’sc’),end

if j==2,text(0.01,0.97,933,'sc’),end

if j==]1,pause,end

‘ I XZZZ2XFI2 2222222022222 222222222222 2222222222222 2 222222222 24
if j==2,subplot(222),end

na={0];

nn=[{no+l1);

et(1)=bb(1,1);

110

for i=l:aa(14,1)-1

et(i)=bb(nn,1);

nn={nn+noj;

fv(i)=bb(ee+l+ns,6);

ns={ns+noj;

end

et=at’;

fv=fv’;

axis({ 0.0 max(et) min(fv) max(fv)])
plot(et,fv,’0’,et,fv)

xlabel(’'TIME’)

ylabel(’'W/R VEL.’)

g34=sprintf(‘W/R VEL. VS TIME FOR NODE NUMBER %g’,ee);
if j==1,text(0.3,0.97,934,'8c’),end

if j==2,text(0.51,0.97,934,’sc’),end

if j==1,pause,end

end

% 1232222232222 22222 2222222222222 X222 2224223222222 22222 X2 X2X2X2 X2
if j==2,subplot(223),end

ns=[0];

nn=[no+l];

et(1)=bb(1,1);

for i=l:aa(l14,1)-1

et(i)=bb(nn,l);

nn=[nn+noj;

fv(i)=bb(ee+l+ns,13);

ns=[ns+noj;

end

et=et’;

fv=fv’;

if min(fv)~=max(£fv),

axis([min(et) max(et) min(fv) max(fv)])
plot(et,fv,’0’,et,fv)

title(’W/R ACC. VS TIME’)

xlabel(’'TIME’)

ylabel(’'W/R ACC.’)

else

text(0.1,0.3,’W/R ACC. vs. TIME is a CONSTANT’,’'sc’)
end

g42=sprintf(’'W/R ACC. VS TIME FOR NODE NUMBER %g’,ee);
if j==1,text(0.72,0.02,g42,’sc’),end

if j==2,text(0.45,0.5,942,'sc’),end

if j==1,pause,end

L 3 (2222222222222 22222222222 2222222222222 2A222222 222232 22222 X224
subplot(224)

ns=(0];

nn=[{no+l1];

et(1)=bb(1,1);

for i=l:aa(14,1)-1

et(i)=bb(nn,1l);

nn=[(nn+no};

fv(i)=bb(ee+l+ns,7);

ns=[ns+noj;

end

et=et’;

fy=fv’;

axis([min(et) max(et) aa(19,1) aa(20,1)])
plot(et, fv,’0’,et,fv)

title('PRESSURE VS TIME’)

xlabel(’TIME’)

ylabel(’'PRESSURE’)

pause

111

end

1 Y [2242222222222 222222 222222222222 2222221222222 22222222y X
| NEXT RESULTANT DEFLECTIONS AND VELOCITIBS V8 TIME
‘ 1224222222222 22 2222222222 22222222222 X222 X222 X222222222Z %]
if xf==3

for j=1:2

if j==2,subplot(221),end

ns=[0];

nn=[no+l];

et(1)=bb(1,1);

for i=1:aa(14,1)~1

et(i)=bb(nn,1l);

nn=[nn+noj;
fv(i)=((bb(ee+l+ns,3)"2.+bb(ee+l+ne,4)"2.)%0.5);
ns=[(ns+noj;

end

et=et’;

fv=fv’;

axis([0.0 max(et) min(fv) max(fv)])
plot(et,fv,’o’,et,fv)

Xlabel(’'TIME’)

ylabel ('RESULTANT DISPLACEMENT’)

g35=sprintf('RESULTANT DISPLACEMENT VS TIME FOR NODE NUMBER ig’,ee);
if j==1,text(0.3,0.97,935,’s8c’),end

if j==2,text(0.01,0.97,935,’8c’),end

if j==1,pause,end

3 (222222232 2222222223222 22 2222222222222 22 2222222222222 222ZX2dRdt2 s
if j==2,subplot(222),end

ns=[{0];

nn=[no+l};

et(1)=bb(1,1);

for i=1:aa(14,1)-1

et(i)=bb(nn,1);

nn=[{nn+nojl;
fv(i)=((bb(ee+l+ns,5)"z.+bb(ee+l+ns,6)"2.)"0.5);
ns=[(ns+noj;

end

et=et’;

fv=fv’;

axis([0.0 max(et) min(fv) max(fv) })
plot(et,fv,’o’,et,fv)

xlabel ('TIME’)

ylabel ('RESULTANT VELOCITY')

g36=sprintf ('RESULTART VELOCITY VS TIME FOR NODE NUMBER %g’,ee);
if j==1,text(0.3,0.97,936,'sc’),end

if j==2,text(0.51,0.97,936,’sc’),end

if j==1,pause,end

‘ L X222 2222 AR RS RS2 222222222 222Xt d 222222 ddaRsd)
end

subplot (224)

ns=[0];

nn=[no+l};

et(1)=bb(1,1);

for i=1l:aa(14,1)-1

et(i)=bb(nn,1);

nn=(nn+noj;

fv(i)=bb(ee+lins,7);

ns=[ns+noj;

end

et=ot’;

fu=fy’;

axis([min(et) max(et) aa(19,1) aa(20,1) })

112

plot(et,fv,’o’,et,fv)
title(’PRESSURE VS TIME’)
xlabel('TIME’)
ylabel('PRESSURE’)

pause

end

else

ee={-1.0]);

end

end

hold off

% [Z2X2X22222X23 22222222222 222222228 2222222222222 2222222 222X 222 24
] NEXT STRESS ANIMATION PLOTS
text(0.1,0.5,’'STRESS ANIMATION? YES:ENTER 1 ,NO:RETURN’,’sc’)
ee=input(’ ’);

clg

if ee==1,

1} XXX I EXI 222222222222 X222 22 X222 X222 222222 X222 2Z2 2 X322 X2
gg(1,1)=[8}];

nth=f{aa(1l,1)];

nn=[nth+l];

no=[nn};

axis([aa(5,1) aa(6,1) aa(23,1) aa(24,1)])
plot(cc(:,1),bb(2:nth+l,gg(1l,1)),’c’,cc(:,1),bb(2:nth+l,g9g(1,1)))
hold on

title('EPSILON PHI VS THETA’)

xlabel(’'THETA in DEGREES’)

ylabel (’EPSILON PHI’)

nn=[nn+noj;

for i=2:aa(14,1)-1
plot(aa(6,1),aa(23,1)+(i/(aa(14,1)-1))*(aa(24,1)-aa(23,1)),0")
plot(cc(:,1),bb(nn-nth+l:nn,gg(1,1)))

pause

plot(cc(:,1),bb(nn-nth+l:nn,gg(l,1)),’i’)

nn=[nn+no};

end

hold off

clg

‘ [ZXXXE22XZ2 2222222222222 222 X222 22222222 22221222222 3ZX 2222232 22R 22}
gg(1,1)=(9]);

nth=[aa(1l,1)];

nn=[nth+l];

no=[(nnj;

axis([aa(5,1) aa(6,1) aa(21,1) aa(22,1)]))
plgt(cc(:,1),bb(2:nth+1,gg(1,1)),'o',cc(:,1),bb(2:nth+1,gg(1,1)))
hold on

title(’EPSILON THETA VS THETA')

xlabel(’THETA in DEGREES')

ylabel(‘EPSILON THETA’)

nn=[nn+noj;

for i=2:aa(14,1)-1
plot(aa(6,1),aa(21,1)+(i/(aa(14,1)-1))*(aa(22,1)-aa(21,1)),’0c"’)
plot(cc(:,1),bb(nn-nth+l:nn,gg(1,1)))

pause

plot(cc(s:,1),bb(nn-nth+l:nn,gg(l,1)),’i’)

nn=[nn+noj;

end

113

hold off

clg

3 L\ 2222222222222 222222 22 2222222222283 Y X XXX SRR L]
gg(1,1)=[10];

nth={aa(l,1)];

nn=[{nth+l];

no=[nnj;

axis({aa(5,1) aa(6,1) aa(27,1) aa(28,1)]))
glgg(cc(:,1),bb(2:nth+1,gq(1,1)),'o',cc(:,1),bb(2:nth+1,gq(1,1)))
old on

title(’SIGMA PHI VS THETA’)

xlabel('THETA in DEGREES’)

ylabel (’SIGMA PHI’)

nn=[nn+noj;

for i=2:aa(14,1)-1
plot(aa(6,1),aa(27,1)+(i/(aa(14,1)-1))*(aa(28,1)-aa(27,1)),’0")
plot(cc(:,1),bb(nn-nth+l:nn,qgg(l,1)))

pause

plot(cc(:,1),bb(nn-nth+l:tnn,gg(l,1)),’i’)

nn=[nn+noj;

end

hold off

clg

| L X222 XX2 2222222222222 222X 22X 222X 22222 2222222222222 X222 22222}
gg(l,1)=[11]};

nth={aa(l1l,1)];

nn={nth+l];

no=[nn};

axis([aa(5,1) aa(6,1) aa(25,1) aa(26,1)])
plot(cc(:,1),bb(2:nth+l,g9g9(1,1)),’0’,cc(:,1),bb(2:nth+l,g9g9(1,1)))

hold on

title(’'SIGMA THETA VS THETA')

xlabel ('THETA in DEGRBES')

ylabel(’SIGMA THETA')

nn=[nn+no]);

for i=2:aa(14,1)-1

plot(aa(6,1),aa(25,1)+(i/(aa(14,1)-1))*(aa(26,1)~aa(25,1)),0")

plot(cc(:,1),bb(nn-nth+l:nn,gg(1,1)))

pause

plot(cc(:,1),bb{(nn-nth+l:nn,gg(1,1)),’1’)

nn=[{nn+no];

end

hold off

clg

end

]

‘ [Z2XI2 XXX X222 22222222 22222222222 XX2 2222223223222 202222 X222]
% NEXT FINAL STRESS AND STRAIN VALUES VERSUS THETA

for i=1:2

if i==2,subplot(221),end

al(l,1)=aa(21,1);

al(2,1)=aa(22,1);

if aa(21,1)==aa(22,1),al(1,1)=aa(21,1)*0.95;,...

al(2,1)=aa(22,1)*1.05;,end

axis([aa(5,1) aa(6,1) al(l,1) al(2,1)])

plot(ce(s,1),cc(2,2),’0’,cc(1,1),cc(2,2))

title(’EPSILON THETA VS THETA')

xlabel (’THETA in DEGREES’)

ylabel ('EPSILON THETA')

if i==],pause,end

Y 22T 222 2222 X2 22X 22 X2 X222 X 22X R X R 2R 2 2R AR X222l ddd

if i==2,subplot(222),end

114

al(l,1l)=aa(23,1);

al(2,1)=aa(24,1);

if aa(23,1)==aa(24,1),al(1,1)=aa(23,1)*0.95;,...
al(2,1)=aa(24,1)*1.05;,end

axis([aa(5,1) aa(6,1) al(1l,1) al(2,1)])
plot(cc(:,1),cc(3,3),'07,cc(2,1),cc(2,3))
title('EPSILON PHI VS THETA’)

xlabel(’'THETA IN DEGREES’)

ylabel ('EPSILON PHI')

if i==], pause,end

) 22222 2X2X22222 2222222222 X 222222222 X222 22 XX23 322222 X322 22222 X2 2]
if i==2,subplot(223),end

al(l,l1)=aa(25,1);

al(2,1)=aa(26€¢,1);

if aa(25,1)==aa(26,1),al(l,1)=aa(25,1)*0.95;,...
al(2,1)=aa(26,1)*1.05;,end

axis([aa(5,1) aa(6,1) al(l,1) al(2,1)]))
plot(cc(:,1),cc(:,4),’0',cc(2,1),cc(1,4))
title(’'SIGMA THETA VS THETA’)

xlabel(’THETA IN DEGREES’)

ylabel(’SIGMA THETA'’)

if ji==]1,pause,end

L Y (22X X2 X2 222222222222 222222222 X222 222 2222222222322 22 X22 X2 2]
if i==2,subplot(224),end

al(l,l)=aa(27,1);

al(2,1)=aa(28,1);

if aa(27,1)==aa(28,1),al(1,1)=aa(27,1)*%*0.95;,...
al(2,1)=aa(28,1)*1.05;,end

axis([aa(5,1) aa(6,1) al(l,1) al(2,1)})
plot(cc(:,1),cc(:,5),’0’,cc(2,1),cc(2,5))
title(’'SIGMA PHI VS THETA’)

xlabel('THETA IN DEGREES’)

ylabel('SIGMA PHI’)

pause

end

clg

% (22X 222222222 22222222 ZX 2222222222222 222X 22222232222 X2Rt3 X}
] NEXT PRESSURE VS TIME CURVES

if aa(19,1)==aa(20,1)

nn=[nth+l];

al(l)=aa(19,1)*1.05;

al(2)=aa(20,1)*0.95;

axis([aa(5,1) aa(6,1) al(l) al(2)])
plot(cc(:,1),bb(nn-nth+l:nn,5))
title(’'PRESSURE=CONSTANT WITH TIME VS. THETA’)
xlabel (‘THETA IN DEGREES')
ylabel ('PRESSURB')

pause

else

axis({ aa(5,1) aa(6,1) aa(19,1) aa(20,1)])
nn=[nth+1];

plot(cc(:,1),bb(nn-nth+l:nn,7))

hold on

title('PRESSURE VS. THETA')

xlabel(’THETA IN DEGREES')
ylabel(’PRESSURE’)

nn=[(nn+noj;

for j=2:aa(l14,1)-1
plot(cc(:,1),bb(nn-nth+l:nn,7))
plot(aa(6,1),aa(19,1)+(j/(aa(14,1)-1))*(aa(20,1)-aa(19,1)),’c’)
pause

plot(cc(s,1),bb(nn-nth+l:nn,7),’1i’)

115

nn=[nn+no};
end

pause

end

hold off
clg

) (2222222 222z 22X a2 222222 222X 22X 2222222222222}

This document re rescarch undertakes .::‘lhea

US Army Natick . !
4 has bees assigaed No. NATICK/TR
g‘t‘l‘:‘nﬁ«“ .:l' upom':ip‘pmod for publication.

116

